GIVEN that: \[20-10=200.\] But, actually\[20\times 10=200,\]so ? MEANS \[\times .\] Given that \[8\div 4=12,\] But actually\[8+4=12.\] So, \[\div \] means\[+.\] Given that: \[6\times 2=4\]But actually\[6-2=4.\] So, \[\times \]means\[-\] THUS, in the given MATHEMATICAL LANGUAGE \[-\]means\[\times ,\] \[\div \]means\[+\]and\[\times \]means \[-\] So, \[\div \]Given expression \[=100\times 10-1000+1000\div 100-10\] \[1000-1000+10-10=0.\]