The inverse sequare law in electrostaticis |F| = (e^(2))/((4piepsi_(0))r^(2))for the force between an electron and a proton. The (1/r) dependenceof |F| can be understood in quantum theo ry as being due to the factthat the particle of light (photon) is massless. Ifphotonshad a mass m_(p), force would bemodifiedto |F| = (e^(2))/((4piepsi_(0))pi^(2)) [ (1)/(r^(2)) + (lambda)/(r)] .exp(-lambdar) where lambda = (m_(p)c)/(h) and h = (h)/(2pi). Estimate the change in the gound state energy of a H-atom if m_(p)were 10^(-6) times the mass of the electron.

Class 12 Physics in Class 12 3 years ago

  230   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

`18.6lambdar_(B)`
`-27.2`
`27.2lambdar_B`
`-lambdar_b`

Solution :As `lambda=(m_p c)/ħ=(m_pc^2)/(ħc)=((10^(-6)m_e)c^2)/(ħc)`
`=(10^(-6)[0.51](1.6xx10^(-13)J))/((1.5xx10^(-34) Js)(3xx10^8 ms^(-1))`
`=0.26xx10^7 m^(-1) " " [because m_e c^2=0.51 MeV]`
`r_B` (Bohr's radius ) =0.51Å=`0.51xx10^(-10)m`
or `lambdar_B=(0.26xx10^7 m^(-1))(0.51xx10^(-10))=0.14xx10^(-3) " lt lt " 1`
Further , as |F|=`(e^2/(4piepsilon_0))[1/R^2+lambda/r]e^(-lambdar)`...(i)
and `|F|=(dU)/(dr), U_r=int|F|dr=(e^2/(4piepsilon_0))int ((lambdae^(-lambdar))/r+e^(-lambdar)/r^2) dr`
If `z=e^(-lambdar)/r=1/r(e^(-lambdar)),(dz)/(dr)=[1/r(e^(-lambdar))(-lambda)+(e^(-lambdar))(-1/r^2)]`
or `dz=-[(lambdae^(-lambdar))/r+e^(-lambdar)/r^2]dr`
Thus `int((lambdae^(-lambdar))/r+e^(-lambdar)/r^2)drimplies - intdz=- z=-e^(-lambdar)/r`
`=-(e^2/(4piepsilon_0))(e^(-lambdar)/r)`...(ii)
We know that, `mvr=ħimplies v=ħ/(MR)`, and `(mv^2)/r=F=(e^2/(4piepsilon_0))(1/r^2+lambda/r)`
[PUTTING `e^(-lambdar~~` 1 in eqn.(i)]
Thus , `(m/r)(ħ^2/(m^2r^2))=(e^2/(4piepsilon_0))(1/r^2+lambda/r)`
or `ħ^2/m=(e^2/(4piepsilon_0))(r^2+lambda/r)`
When `lambda=0` , `r=r_B` and `ħ^2/m=(e^2/(4piepsilon_0))r_B` ...(iv)From EQNS. (iii) and (iv) , `r_B=r+lambdar^2`
Let `r=r_B=delta` so that form (iii)
`r_B=(r_B+delta)+lambda(r_B^2+delta^2+2deltar_B)`
or `0=lambdar_B^2+delta(1+2lambdar_B)` (neglecting `delta^2`)
or `delta=-(lambdar_B^2)/((1+2lambdar_B))=(-lambdar_B^2)(1+2lambdar_B)^(-1)`

`=(-lambdar_B^2)(1-2lambdar_B)=-lambdar_B^2 " " (because lambdar_B lt lt 1)`
From eqn. (ii) `U_r=-(e^2/(4piepsilon_0))(e^(-lambda(r_B+delta)))/((r_B+delta))`
`=-(e^2/(4piepsilon_0)1/r_B)(1-delta/r_B)(1-lambdar_B)~~ - e^2/(4piepsilon_0r_B)=-27.2 eV`
`[because e^(-lambda(r_B+delta))~~1-lambda(r_B+delta)=1-lambdar_B-lambdadelta~~1-deltar_B]`
and `1/((r_B+delta))=1/(r_B(1+delta//r_B))=1/r_B(1+delta/r_B)^(-1) =1/r_B(1-delta/r_B)`
Further, KE of the electron, `K=1/2mv^2=1/2m(ħ^2/(m^2r^2))`
`=ħ^2/(2mr^2)=ħ^2/(2m(r_B+delta)^2)=ħ^2/(2mr_B^2+(1+delta//r_B)^2)`
`=(ħ^2/(2mr_B^2))(1+delta/r_B)^(-2)=(ħ^2/(2mr_B^2))(1-(2delta)/r_B)`
`=(13.6)(1+2lambdar_B)eV`
(as `ħ^2/(2mr_B^2)=13.6 eV and delta=-lambdar_B^2`)
Total ENERGY of H-atom in the ground state =final energy - initial energy
`=(-.^13.6+27.2lambdar_B)eV-(-13.6 eV)=(27.2 lambdar_B)eV`

Posted on 11 Dec 2021, this text provides information on Class 12 related to Physics in Class 12. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.