Speak now
Please Wait Image Converting Into Text...
Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
Computer Assembly Language Miscellaneous in Computer Assembly Language . 1 month ago
Significant figures (also known as the significant digits, precision or resolution) of a number in positional notation are digits in the number that are reliable and absolutely necessary to indicate the quantity of something. If a number expressing the result of measurement of something (e.g., length, pressure, volume, or mass) has more digits than the digits allowed by the measurement resolution, only the digits allowed by the measurement resolution are reliable and so only these can be significant figures. For example, if a length measurement gives 114.8 mm while the smallest interval between marks on the ruler used in the measurement is 1 mm, then the first three digits (1, 1, and 4, and these show 114 mm) are only reliable so can be significant figures. Among these digits, there is uncertainty in the last digit (8, to add 0.8 mm) but it is also considered as a significant figure since digits that are uncertain but reliable are considered significant figures. Another example is a volume measurement of 2.98 L with the uncertainty of ± 0.05 L. The actual volume is somewhere between 2.93 L and 3.03 L. Even if all three digits are not certain (e.g., the actual volume can be 2.94 L but also can be 3.02 L.) but reliable as these indicate to the actual volume with the acceptable uncertainty. So, these are significant figures.
The following digits are not significant figures.
Of the significant figures in a number, the most significant is the digit with the highest exponent value (simply the left-most significant figure), and the least significant is the digit with the lowest exponent value (simply the right-most significant figure). For example, in the number "123", the "1" is the most significant figure as it counts hundreds (102), and "3" is the least significant figure as it counts ones (100).
Significance arithmetic is a set of approximate rules for roughly maintaining significance throughout a computation. The more sophisticated scientific rules are known as propagation of uncertainty.
Numbers are often rounded to avoid reporting insignificant figures. For example, it would create false precision to express a measurement as 12.34525 kg if the scale was only measured to the nearest gram. In this case, the significant figures are the first 5 digits from the left-most digit (1, 2, 3, 4, and 5), and the number needs to be rounded to the significant figures so that it will be 12.345 kg as the reliable value. Numbers can also be rounded merely for simplicity rather than to indicate a precision of measurement, for example, in order to make the numbers faster to pronounce in news broadcasts.
Radix 10 is assumed in the following.
Posted on 14 Nov 2024, this text provides information on Computer Assembly Language related to Miscellaneous in Computer Assembly Language. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
Answers
No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.
Ready to take your education and career to the next level? Register today and join our growing community of learners and professionals.