What is Reduced Media Independent Interface mean? The media-independent interface (MII) was originally defined as a standard interface to connect a Fast Ethernet (i.e., 100 Mbit/s) media access control (MAC) block to a PHY chip. The MII is standardized by IEEE 802.3u and connects different types of PHYs to MACs. Being media independent means that different types of PHY devices for connecting to different media (i.e. twisted pair, fiber optic, etc.) can be used without redesigning or replacing the MAC hardware. Thus any MAC may be used with any PHY, independent of the network signal transmission media.
The MII can be used to connect a MAC to an external PHY using a pluggable connector, or directly to a PHY chip on the same PCB. On a PC the CNR connector Type B carries MII signals.
Network data on the interface is framed using the IEEE Ethernet standard. As such it consists of a preamble, start frame delimiter, Ethernet headers, protocol-specific data and a cyclic redundancy check (CRC). The original MII transfers network data using 4-bit nibbles in each direction (4 transmit data bits, 4 receive data bits). The data is clocked at 25 MHz to achieve 100 Mbit/s throughput. The original MII design has been extended to support reduced signals and increased speeds. Current variants include reduced media-independent interface (RMII), gigabit media-independent interface (GMII), reduced gigabit media-independent interface (RGMII), serial gigabit media-independent interface (SGMII), high serial gigabit media-independent interface (HSGMII), quad serial gigabit media-independent interface (QSGMII), and 10-gigabit media-independent interface (XGMII).
The Management Data Input/Output (MDIO) serial bus is a subset of the MII that is used to transfer management information between MAC and PHY. At power up, using autonegotiation, the PHY usually adapts to whatever it is connected to unless settings are altered via the MDIO interface.
reference
Posted on 17 Nov 2024, this text provides information on Computing related to Miscellaneous in Computing. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.