Deletion procedure for a Binary Search Tree

Course Queries Syllabus Queries 2 years ago

0 1 0 0 0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Posted on 16 Aug 2022, this text provides information on Syllabus Queries related to Course Queries. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Answers (1)

Post Answer
profilepic.png
manpreet Tuteehub forum best answer Best Answer 2 years ago


Consider the deletion procedure on a BST, when the node to delete has two children. Let's say i always replace it with the node holding the minimum key in its right subtree.

The question is: is this procedure commutative? That is, deleting x and then y has the same result than deleting first y and then x?

I think the answer is no, but i can't find a counterexample, nor figure out any valid reasoning.

EDIT:

Maybe i've got to be clearer.

Consider the transplant(node x, node y) procedure: it replace x with y (and its subtree). So, if i want to delete a node (say x) which has two children i replace it with the node holding the minimum key in its right subtree:

y = minimum(x.right)
transplant(y, y.right) // extracts the minimum (it doesn't have left child)
y.right = x.right
y.left = x.left
transplant(x,y)

The question was how to prove the procedure above is not commutative.

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.