Sometimes it can help to take things to a ridiculous extreme, like finding the derivative of ln(sin(cos(
Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Take A QuizChallenge yourself and boost your learning! Start the quiz now to earn credits.
Take A QuizUnlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
Take A QuizCourse Queries Syllabus Queries 3 years ago
User submissions are the sole responsibility of contributors, with TuteeHUB disclaiming liability for accuracy, copyrights, or consequences of use; content is for informational purposes only and not professional advice.
No matter what stage you're at in your education or career, TuteeHUB will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.
Ready to take your education and career to the next level? Register today and join our growing community of learners and professionals.
Your experience on this site will be improved by allowing cookies. Read Cookie Policy
Your experience on this site will be improved by allowing cookies. Read Cookie Policy
manpreet
Best Answer
3 years ago
I teach calculus to students who have almost all taken calculus before. (Primarily first-year college students who took calculus in high school but didn't perform well enough to skip the course.)
For many topics, my students think they know the subject already, but all they actually know are a bunch of short-cuts or special cases. The problem is that when I try to illustrate the new ideas with simple problems, they fall back on their short-cuts rather than using what we've covered. Then when they get to the harder problems, they're completely lost, because the short-cuts don't work, but they haven't gotten any practice with the new material.
I can tell them "you have to solve this problem using this method", but that feeds into the lesson that math is an arbitrary pile of methods which we choose based on the professor's whim, and it causes them to resent the new method.
My question is what are good tactics to break through this: to either convince students that it's in their interests to rethink how they approach the simple cases, or even better, a way to make the parts they know useful rather than an obstacle.
(The original version of this question gave about a concrete example of a subject where this happens, but it attracted a lot of off-topic answers focusing on the example rather than the question, so I've removed it for clarity.)