Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Take A QuizChallenge yourself and boost your learning! Start the quiz now to earn credits.
Take A QuizUnlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
Take A QuizKindly log in to use this feature. We’ll take you to the login page automatically.
LoginCourse Queries Syllabus Queries 3 years ago
User submissions are the sole responsibility of contributors, with TuteeHUB disclaiming liability for accuracy, copyrights, or consequences of use; content is for informational purposes only and not professional advice.
No matter what stage you're at in your education or career, TuteeHUB will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.
Kindly log in to use this feature. We’ll take you to the login page automatically.
LoginReady to take your education and career to the next level? Register today and join our growing community of learners and professionals.
Your experience on this site will be improved by allowing cookies. Read Cookie Policy
Your experience on this site will be improved by allowing cookies. Read Cookie Policy
manpreet
Best Answer
3 years ago
I've been looking at some quals problems for algebraic topology that I found online. The problem is that I don't know if I can solve them with the amount of algebraic topology that I know, but nevertheless, they seem interesting. Also I know my committee tends to ask questions about topics not on the syllabus... The problems are as follows:
Show that if a connected manifold MM is the boundary of a compact manifold, then the Euler characteristic of MM is even.
Show that RP2nRP2n and CP2nCP2n cannot be boundaries.
Show that CP2#CP2CP2#CP2 cannot be the boundary of an orientable 55-manifold.
Show that the Euler characteristic of a closed manifold of odd dimension is zero.
I haven't found anything in Hatcher that would link manifolds, their dimensions etc. to the Euler characteristic. In particular, I don't know what information in the definition of a manifold would help with computing the Euler characteristic. If someone could provide me with some book, lecture note or anything like that or provide some basic hints, so that I could try to construct enough of the theory myself in order to do the problems above, I'd appreciate it.