Speak now
Please Wait Image Converting Into Text...
Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
Course Queries Syllabus Queries 2 years ago
Posted on 16 Aug 2022, this text provides information on Syllabus Queries related to Course Queries. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
I'm following Cambrige mathematics syllabus, from the list of contents of what should be learned:
Induction as a method of proof, including a proof of the binomial theorem with non-negative integral coefficients.
I know what it is, but I'm not sure of what should be proved here. The first thing that comes to mind is the idea of proving it it for n+1n+1, but I thought about writing:
(a+b)n(a+b)n
(a+b)n+1(a+b)n+1
But I am missing what premise I should prove. I guess that the proof involves the nature of the coefficients of the expansion of (a+b)n(a+b)n but from here, I have no idea on how to proceed. Can you help me?
Edit: I guess I've made some progress. First I evaluated
Then I've evaluated it with the summation form
And confirmed that it's equal to 11 (I guess this is the base step).
The I did the same for REPLY 0 views 0 likes 0 shares Facebook Twitter Linked In WhatsApp
If you know the expansion of (a+b)n(a+b)n, it follows that the expansion of (a+b)n+1=(a+b)(a+b)n=a(a+b)n+b(a+b)n(a+b)n+1=(a+b)(a+b)n=a(a+b)n+b(a+b)n can be found by distributing term by term and collecting coefficients. This is the type of reasoning you should use when doing inductive proofs.
No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.
Course Queries 4 Answers
Course Queries 5 Answers
Course Queries 1 Answers
Course Queries 3 Answers
Ready to take your education and career to the next level? Register today and join our growing community of learners and professionals.