RM{x}} + \sin {\rm{y}} = 2\sin \left( {\frac{{{\rm{x}} + {\rm{y}}}}{2}} \right)\cos \left( {\frac{{{\rm{x}} - {\rm{y}}}}{2}} \right)\)sin 2A = 2 sin A cos A\(1 + \cos {\rm{A}} = {\rm{\;}}2{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\) Calculation:We have to find the value of Sin A + 2 sin 2 A + sin 3A⇒ sin A + 2 sin 2A + sin 3A = (sin A + sin 3A) + 2sin 2A= 2 sin 2A cos A + 2 sin 2A \(\left[\because {\sin {\rm{x}} + \sin {\rm{y}} = 2\sin \left( {\frac{{{\rm{x}} + {\rm{y}}}}{2}} \right)\cos \left( {\frac{{{\rm{x}} - {\rm{y}}}}{2}} \right)} \right]\)= 2 sin 2A (1 + cos A) ---(1)\(= 2{\rm{\;sin\;}}2{\rm{A}} \TIMES 2{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\)\(= 4\sin 2{\rm{A}}{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\)So, Statement (1) is correct.Now,\(= 4\sin 2{\rm{A}}{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right) = 4 \times 2\sin {\rm{A}}\cos {\rm{A}} \times {\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\) (∵ sin 2A = 2 sin A cos A)\(= 8\sin {\rm{A}}\cos {\rm{A}}{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\)So, Statement (3) is also correct.Now, Check statement 2:\(2\sin 2{\rm{A\;}}{\left( {\sin \frac{{\rm{A}}}{2} + \cos \frac{{\rm{A}}}{2}} \right)^2} = 2\sin 2{\rm{A\;}}\left( {{{\sin }^2}\frac{{\rm{A}}}{2} + {{\cos }^2}\frac{{\rm{A}}}{2} + 2\sin \frac{{\rm{A}}}{2}\cos \frac{{\rm{A}}}{2}} \right) = 2\sin 2{\rm{A}}\left( {1 + \sin {\rm{A}}} \right)\)From EQUATION 1st,sin A + 2 sin 2A + sin 3A = 2 sin 2A (1 + cos A)So we can SAY that statement 2 is wrong.

"> RM{x}} + \sin {\rm{y}} = 2\sin \left( {\frac{{{\rm{x}} + {\rm{y}}}}{2}} \right)\cos \left( {\frac{{{\rm{x}} - {\rm{y}}}}{2}} \right)\)sin 2A = 2 sin A cos A\(1 + \cos {\rm{A}} = {\rm{\;}}2{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\) Calculation:We have to find the value of Sin A + 2 sin 2 A + sin 3A⇒ sin A + 2 sin 2A + sin 3A = (sin A + sin 3A) + 2sin 2A= 2 sin 2A cos A + 2 sin 2A \(\left[\because {\sin {\rm{x}} + \sin {\rm{y}} = 2\sin \left( {\frac{{{\rm{x}} + {\rm{y}}}}{2}} \right)\cos \left( {\frac{{{\rm{x}} - {\rm{y}}}}{2}} \right)} \right]\)= 2 sin 2A (1 + cos A) ---(1)\(= 2{\rm{\;sin\;}}2{\rm{A}} \TIMES 2{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\)\(= 4\sin 2{\rm{A}}{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\)So, Statement (1) is correct.Now,\(= 4\sin 2{\rm{A}}{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right) = 4 \times 2\sin {\rm{A}}\cos {\rm{A}} \times {\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\) (∵ sin 2A = 2 sin A cos A)\(= 8\sin {\rm{A}}\cos {\rm{A}}{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\)So, Statement (3) is also correct.Now, Check statement 2:\(2\sin 2{\rm{A\;}}{\left( {\sin \frac{{\rm{A}}}{2} + \cos \frac{{\rm{A}}}{2}} \right)^2} = 2\sin 2{\rm{A\;}}\left( {{{\sin }^2}\frac{{\rm{A}}}{2} + {{\cos }^2}\frac{{\rm{A}}}{2} + 2\sin \frac{{\rm{A}}}{2}\cos \frac{{\rm{A}}}{2}} \right) = 2\sin 2{\rm{A}}\left( {1 + \sin {\rm{A}}} \right)\)From EQUATION 1st,sin A + 2 sin 2A + sin 3A = 2 sin 2A (1 + cos A)So we can SAY that statement 2 is wrong.

">

Sin A + 2 sin 2 A + sin 3A is equal to which of the following?1. \(4\sin 2{\rm{A}}{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\)2. \(2\sin 2{\rm{A\;}}{\left( {\sin \frac{{\rm{A}}}{2} + \cos \frac{{\rm{A}}}{2}} \right)^2}\)3. \(8\sin {\rm{A}}\cos {\rm{A}}{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\)Select the correct answer using the code given below:

Current Affairs General Awareness in Current Affairs 9 months ago

  3   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Concept:\(\sin {\RM{x}} + \sin {\rm{y}} = 2\sin \left( {\frac{{{\rm{x}} + {\rm{y}}}}{2}} \right)\cos \left( {\frac{{{\rm{x}} - {\rm{y}}}}{2}} \right)\)sin 2A = 2 sin A cos A\(1 + \cos {\rm{A}} = {\rm{\;}}2{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\) Calculation:We have to find the value of Sin A + 2 sin 2 A + sin 3A⇒ sin A + 2 sin 2A + sin 3A = (sin A + sin 3A) + 2sin 2A= 2 sin 2A cos A + 2 sin 2A \(\left[\because {\sin {\rm{x}} + \sin {\rm{y}} = 2\sin \left( {\frac{{{\rm{x}} + {\rm{y}}}}{2}} \right)\cos \left( {\frac{{{\rm{x}} - {\rm{y}}}}{2}} \right)} \right]\)= 2 sin 2A (1 + cos A) ---(1)\(= 2{\rm{\;sin\;}}2{\rm{A}} \TIMES 2{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\)\(= 4\sin 2{\rm{A}}{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\)So, Statement (1) is correct.Now,\(= 4\sin 2{\rm{A}}{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right) = 4 \times 2\sin {\rm{A}}\cos {\rm{A}} \times {\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\) (∵ sin 2A = 2 sin A cos A)\(= 8\sin {\rm{A}}\cos {\rm{A}}{\cos ^2}\left( {\frac{{\rm{A}}}{2}} \right)\)So, Statement (3) is also correct.Now, Check statement 2:\(2\sin 2{\rm{A\;}}{\left( {\sin \frac{{\rm{A}}}{2} + \cos \frac{{\rm{A}}}{2}} \right)^2} = 2\sin 2{\rm{A\;}}\left( {{{\sin }^2}\frac{{\rm{A}}}{2} + {{\cos }^2}\frac{{\rm{A}}}{2} + 2\sin \frac{{\rm{A}}}{2}\cos \frac{{\rm{A}}}{2}} \right) = 2\sin 2{\rm{A}}\left( {1 + \sin {\rm{A}}} \right)\)From EQUATION 1st,sin A + 2 sin 2A + sin 3A = 2 sin 2A (1 + cos A)So we can SAY that statement 2 is wrong.

Posted on 31 Oct 2024, this text provides information on Current Affairs related to General Awareness in Current Affairs. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.