9,11) and D(x,y,z) be the vertices of a parallelogramAs we know,Diagonals of a parallelogram bisect each other∴ MIDPOINT of AC = midpoint of BD\(\left( {\frac{{1 + 7}}{2},\frac{{1 + 9}}{2},\frac{{1 + 11}}{2}} \right) = \left( {\frac{{1 + x}}{2},\frac{{3 + y}}{2},\frac{{5 + z}}{2}} \right)\)Comparing both SIDES, we get1 + 7 = 1 + xx = 7And, 1 + 9 = 3 + yy = 7And, 1 + 11 = 5 + zz = 7∴ Position VECTOR of fourth vertex is 7(i + j + k)