SMALLINT \nolimits_0^{{\rm{nT}}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = {\rm{n}}\mathop \smallint \nolimits_0^{\rm{T}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}},{\rm{\;n}} \in {\rm{Z}}\)\(\mathop \smallint \nolimits_{\rm{a}}^{{\rm{a}} + {\rm{\;nT}}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = {\rm{n}}\mathop \smallint \nolimits_0^{\rm{T}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}},{\rm{\;n}} \in {\rm{Z}},{\rm{\;a}} \in {\rm{R}}\)2. Fractional PART of x: This is the difference between x and its greatest integer part, [x]The fractional part of x is given by: {x} = x – [x]{x} = x for 0 ≤ x < 1Period of the fractional part of x is one.Graph of the fractional part of x:Calculation:We have to find the VALUE of \(\mathop \smallint \limits_{ - 2}^2 {\rm{x\;dx}} - \mathop \smallint \limits_{ - 2}^2 \left[ {\rm{x}} \right]{\rm{dx}}\)\({\rm{LET\;I\;}} = \mathop \smallint \limits_{ - 2}^2 {\rm{x\;dx}} - \mathop \smallint \limits_{ - 2}^2 \left[ {\rm{x}} \right]{\rm{dx}} = {\rm{\;}}\mathop \smallint \limits_{ - 2}^2 {\rm{x}} - {\rm{\;}}\left[ {\rm{x}} \right]{\rm{\;dx}}\)\(\Rightarrow {\rm{I}} = \mathop \smallint \limits_{ - 2}^2 \left\{ {\rm{x}} \right\}{\rm{\;dx}}\) (∵ x – [x] = {x})As we know that period of {x} is one.\(\Rightarrow {\rm{I}} = \mathop \smallint \limits_{ - 2}^2 \left\{ {\rm{x}} \right\}{\rm{\;dx}} = 4 \times \mathop \smallint \limits_0^1 {\rm{x\;dx}} = 4 \times {\rm{\;}}\left[ {\frac{{{{\rm{x}}^2}}}{2}} \right]_0^1 = {\rm{\;}}4 \times \left( {\frac{1}{2} - 0} \right) = 2\)

"> SMALLINT \nolimits_0^{{\rm{nT}}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = {\rm{n}}\mathop \smallint \nolimits_0^{\rm{T}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}},{\rm{\;n}} \in {\rm{Z}}\)\(\mathop \smallint \nolimits_{\rm{a}}^{{\rm{a}} + {\rm{\;nT}}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = {\rm{n}}\mathop \smallint \nolimits_0^{\rm{T}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}},{\rm{\;n}} \in {\rm{Z}},{\rm{\;a}} \in {\rm{R}}\)2. Fractional PART of x: This is the difference between x and its greatest integer part, [x]The fractional part of x is given by: {x} = x – [x]{x} = x for 0 ≤ x < 1Period of the fractional part of x is one.Graph of the fractional part of x:Calculation:We have to find the VALUE of \(\mathop \smallint \limits_{ - 2}^2 {\rm{x\;dx}} - \mathop \smallint \limits_{ - 2}^2 \left[ {\rm{x}} \right]{\rm{dx}}\)\({\rm{LET\;I\;}} = \mathop \smallint \limits_{ - 2}^2 {\rm{x\;dx}} - \mathop \smallint \limits_{ - 2}^2 \left[ {\rm{x}} \right]{\rm{dx}} = {\rm{\;}}\mathop \smallint \limits_{ - 2}^2 {\rm{x}} - {\rm{\;}}\left[ {\rm{x}} \right]{\rm{\;dx}}\)\(\Rightarrow {\rm{I}} = \mathop \smallint \limits_{ - 2}^2 \left\{ {\rm{x}} \right\}{\rm{\;dx}}\) (∵ x – [x] = {x})As we know that period of {x} is one.\(\Rightarrow {\rm{I}} = \mathop \smallint \limits_{ - 2}^2 \left\{ {\rm{x}} \right\}{\rm{\;dx}} = 4 \times \mathop \smallint \limits_0^1 {\rm{x\;dx}} = 4 \times {\rm{\;}}\left[ {\frac{{{{\rm{x}}^2}}}{2}} \right]_0^1 = {\rm{\;}}4 \times \left( {\frac{1}{2} - 0} \right) = 2\)

">

What is \(\mathop \smallint \limits_{ - 2}^2 {\rm{x\;dx}} - \mathop \smallint \limits_{ - 2}^2 \left[ {\rm{x}} \right]{\rm{dx}}\) equal to, where [⋅] is the greatest integer function?

Current Affairs General Awareness in Current Affairs . 7 months ago

  4   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Concept:1. If f(x) is periodic function with period T then,\(\mathop \SMALLINT \nolimits_0^{{\rm{nT}}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = {\rm{n}}\mathop \smallint \nolimits_0^{\rm{T}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}},{\rm{\;n}} \in {\rm{Z}}\)\(\mathop \smallint \nolimits_{\rm{a}}^{{\rm{a}} + {\rm{\;nT}}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}} = {\rm{n}}\mathop \smallint \nolimits_0^{\rm{T}} {\rm{f}}\left( {\rm{x}} \right){\rm{dx}},{\rm{\;n}} \in {\rm{Z}},{\rm{\;a}} \in {\rm{R}}\)2. Fractional PART of x: This is the difference between x and its greatest integer part, [x]The fractional part of x is given by: {x} = x – [x]{x} = x for 0 ≤ x < 1Period of the fractional part of x is one.Graph of the fractional part of x:Calculation:We have to find the VALUE of \(\mathop \smallint \limits_{ - 2}^2 {\rm{x\;dx}} - \mathop \smallint \limits_{ - 2}^2 \left[ {\rm{x}} \right]{\rm{dx}}\)\({\rm{LET\;I\;}} = \mathop \smallint \limits_{ - 2}^2 {\rm{x\;dx}} - \mathop \smallint \limits_{ - 2}^2 \left[ {\rm{x}} \right]{\rm{dx}} = {\rm{\;}}\mathop \smallint \limits_{ - 2}^2 {\rm{x}} - {\rm{\;}}\left[ {\rm{x}} \right]{\rm{\;dx}}\)\(\Rightarrow {\rm{I}} = \mathop \smallint \limits_{ - 2}^2 \left\{ {\rm{x}} \right\}{\rm{\;dx}}\) (∵ x – [x] = {x})As we know that period of {x} is one.\(\Rightarrow {\rm{I}} = \mathop \smallint \limits_{ - 2}^2 \left\{ {\rm{x}} \right\}{\rm{\;dx}} = 4 \times \mathop \smallint \limits_0^1 {\rm{x\;dx}} = 4 \times {\rm{\;}}\left[ {\frac{{{{\rm{x}}^2}}}{2}} \right]_0^1 = {\rm{\;}}4 \times \left( {\frac{1}{2} - 0} \right) = 2\)

Posted on 21 Oct 2024, this text provides information on Current Affairs related to General Awareness in Current Affairs. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.