CTHEN, a + b + c = 22 cm ----(1)DIAGONAL = 14 cm\(\Rightarrow \sqrt {{a^2} + {b^2} + {c^2}} = 14\)A2 + b2 + c2 = 196now, squaring both in equation 1(a + b + c)2 = 484⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 484196 + 2(ab + bc + ca) = 4842(ab + bc + ca) = 288Surface AREA of the cuboid is 2(ab + bc + ca)⇒ The SURFACE area of the cuboid is 288 cm2