ACL\({A_{CL}} = \frac{{{A_{OL}}}}{{1 + {A_{OL}}\beta }}\)Here, \({A_{OL}} = \frac{{{{10}^4}}}{{1 + {{10}^{ - 3}}s}},\beta = \frac{{{R_i}}}{{{R_i} + {R_f}}} = \frac{1}{{9 + 1}} = 0.1\) \({A_{CL}} = \frac{{\frac{{{{10}^4}}}{{1 + {{10}^{ - 3}}s}}}}{{1 + \frac{{{{10}^4} \times 0.1}}{{1 + {{10}^{ - 3}}s}}}} = \frac{{{{10}^4}}}{{1 + {{10}^{ - 3}} + {{10}^3}}}\)\( = \frac{{10}}{{{{10}^{ - 3}} + {{10}^{ - 6}}s + 1}} = \frac{{10}}{{1 + \frac{s}{{{{10}^6}}}}}\)In a first order transfer function \(\frac{k}{{1 + s\tau }}\)The bandwidth of system is GIVEN by \(\frac{1}{\tau }\)B.W = 106