WRITE the system as an augmented matrix.Look at the first entry in the first row. Make this entry into a 1 and all other entries in that column 0s. This is called pivoting the matrix about this element.Once this is done, move down the diagonal to the second entry of the second row and PIVOT about this entry.Continue until the whole matrix is in row-reduced form.Solve for the values of variables.Calculation:Given,2x1 + 4x2 - 6x3 = - 8 ---(1)x1 + 3x2 + x3 = 10 ---(2)2x1 - 4x2 - 2x3 = - 12 ---(3)This system of equations can be written in the form of matrices as follows -\(\left[ {\BEGIN{array}{*{20}{c}} 2&4&{ - 6}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}}\\ {{x_3}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 8}\\ {10}\\ { - 12} \end{array}} \right]\)⇒ [A][X]=[D] ---(4)Here,\([A] = \left[ {\begin{array}{*{20}{c}} 2&4&{ - 6}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}} \right]\)\([D] = \left[ {\begin{array}{*{20}{c}} { - 8}\\ {10}\\ { - 12} \end{array}} \right]\)\([X] = \left[ {\begin{array}{*{20}{c}} {x_1}\\ {x_2}\\ {x_3} \end{array}} \right]\)STEP 1: Writing Augment Matrix\(\therefore[A~\vdots ~D] = \left[ {\begin{array}{*{20}{c}} 2&4&{ - 6}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 8}\\ {10}\\ { - 12} \end{array}} \right]\)Step 2: Applying elementary transformations or pivoting of the augment MATRIXA) R1 → \(\frac{1}{2}\)R1\( = \left[ {\begin{array}{*{20}{c}} 1&2&{ -3}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 4}\\ {10}\\ { - 12} \end{array}} \right]\)b) R2 → R2 - R1; R3 → R3 - 2R1\( = \left[ {\begin{array}{*{20}{c}} 1&2&{ -3}\\ 0&1&4\\ 0&{ - 8}&{ 4} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 4}\\ {14}\\ { - 4} \end{array}} \right]\)c) R3 → R3 + 8R2\( = \left[ {\begin{array}{*{20}{c}} 1&2&{ -3}\\ 0&1&4\\ 0&{ 0}&{ 36} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 4}\\ {14}\\ { 108} \end{array}} \right]\)Step 3: Solving for variables -Now, the reduced equations can be written as -x1 + 2x2 - 3x3 = - 4 ---(5)x2 + 4x3 = 14 ---(6)36x3 = 108 ---(7)Solving (5), (6), and (7)x3 = 3x2 = 2x1 = 1

"> WRITE the system as an augmented matrix.Look at the first entry in the first row. Make this entry into a 1 and all other entries in that column 0s. This is called pivoting the matrix about this element.Once this is done, move down the diagonal to the second entry of the second row and PIVOT about this entry.Continue until the whole matrix is in row-reduced form.Solve for the values of variables.Calculation:Given,2x1 + 4x2 - 6x3 = - 8 ---(1)x1 + 3x2 + x3 = 10 ---(2)2x1 - 4x2 - 2x3 = - 12 ---(3)This system of equations can be written in the form of matrices as follows -\(\left[ {\BEGIN{array}{*{20}{c}} 2&4&{ - 6}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}}\\ {{x_3}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 8}\\ {10}\\ { - 12} \end{array}} \right]\)⇒ [A][X]=[D] ---(4)Here,\([A] = \left[ {\begin{array}{*{20}{c}} 2&4&{ - 6}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}} \right]\)\([D] = \left[ {\begin{array}{*{20}{c}} { - 8}\\ {10}\\ { - 12} \end{array}} \right]\)\([X] = \left[ {\begin{array}{*{20}{c}} {x_1}\\ {x_2}\\ {x_3} \end{array}} \right]\)STEP 1: Writing Augment Matrix\(\therefore[A~\vdots ~D] = \left[ {\begin{array}{*{20}{c}} 2&4&{ - 6}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 8}\\ {10}\\ { - 12} \end{array}} \right]\)Step 2: Applying elementary transformations or pivoting of the augment MATRIXA) R1 → \(\frac{1}{2}\)R1\( = \left[ {\begin{array}{*{20}{c}} 1&2&{ -3}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 4}\\ {10}\\ { - 12} \end{array}} \right]\)b) R2 → R2 - R1; R3 → R3 - 2R1\( = \left[ {\begin{array}{*{20}{c}} 1&2&{ -3}\\ 0&1&4\\ 0&{ - 8}&{ 4} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 4}\\ {14}\\ { - 4} \end{array}} \right]\)c) R3 → R3 + 8R2\( = \left[ {\begin{array}{*{20}{c}} 1&2&{ -3}\\ 0&1&4\\ 0&{ 0}&{ 36} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 4}\\ {14}\\ { 108} \end{array}} \right]\)Step 3: Solving for variables -Now, the reduced equations can be written as -x1 + 2x2 - 3x3 = - 4 ---(5)x2 + 4x3 = 14 ---(6)36x3 = 108 ---(7)Solving (5), (6), and (7)x3 = 3x2 = 2x1 = 1

">

After solving the system2x1 + 4x2 - 6x3 = - 8x1 + 3x2 + x3 = 10 and2x1 - 4x2 - 2x3 = - 12Using the Gauss-Jordan method, the values of x1, x2 and x3 are

General Aptitude Algebra in General Aptitude . 3 months ago

  6   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Concept:Gauss-Jordan Method:This method is used to simplify an augmented matrix to its reduced-row echelon form. The following are the steps that must be followed while using the Gauss-Jordan Elimination method -WRITE the system as an augmented matrix.Look at the first entry in the first row. Make this entry into a 1 and all other entries in that column 0s. This is called pivoting the matrix about this element.Once this is done, move down the diagonal to the second entry of the second row and PIVOT about this entry.Continue until the whole matrix is in row-reduced form.Solve for the values of variables.Calculation:Given,2x1 + 4x2 - 6x3 = - 8 ---(1)x1 + 3x2 + x3 = 10 ---(2)2x1 - 4x2 - 2x3 = - 12 ---(3)This system of equations can be written in the form of matrices as follows -\(\left[ {\BEGIN{array}{*{20}{c}} 2&4&{ - 6}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}}\\ {{x_2}}\\ {{x_3}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 8}\\ {10}\\ { - 12} \end{array}} \right]\)⇒ [A][X]=[D] ---(4)Here,\([A] = \left[ {\begin{array}{*{20}{c}} 2&4&{ - 6}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}} \right]\)\([D] = \left[ {\begin{array}{*{20}{c}} { - 8}\\ {10}\\ { - 12} \end{array}} \right]\)\([X] = \left[ {\begin{array}{*{20}{c}} {x_1}\\ {x_2}\\ {x_3} \end{array}} \right]\)STEP 1: Writing Augment Matrix\(\therefore[A~\vdots ~D] = \left[ {\begin{array}{*{20}{c}} 2&4&{ - 6}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 8}\\ {10}\\ { - 12} \end{array}} \right]\)Step 2: Applying elementary transformations or pivoting of the augment MATRIXA) R1 → \(\frac{1}{2}\)R1\( = \left[ {\begin{array}{*{20}{c}} 1&2&{ -3}\\ 1&3&1\\ 2&{ - 4}&{ - 2} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 4}\\ {10}\\ { - 12} \end{array}} \right]\)b) R2 → R2 - R1; R3 → R3 - 2R1\( = \left[ {\begin{array}{*{20}{c}} 1&2&{ -3}\\ 0&1&4\\ 0&{ - 8}&{ 4} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 4}\\ {14}\\ { - 4} \end{array}} \right]\)c) R3 → R3 + 8R2\( = \left[ {\begin{array}{*{20}{c}} 1&2&{ -3}\\ 0&1&4\\ 0&{ 0}&{ 36} \end{array}}{\begin{array}{*{20}{c}} { \vdots}\\ {\vdots}\\ { \vdots} \end{array}}{\begin{array}{*{20}{c}} { - 4}\\ {14}\\ { 108} \end{array}} \right]\)Step 3: Solving for variables -Now, the reduced equations can be written as -x1 + 2x2 - 3x3 = - 4 ---(5)x2 + 4x3 = 14 ---(6)36x3 = 108 ---(7)Solving (5), (6), and (7)x3 = 3x2 = 2x1 = 1

Posted on 22 Oct 2024, this text provides information on General Aptitude related to Algebra in General Aptitude. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.