PAS we know,(x + 1/x)3 = x3 + 1/x3 + 3 (x + 1/x)p3 = k + 3pk = p3 - 3pk/p = p2 - 3Short TRICK:\({\left( {{x^3} + \frac{1}{{{x^3}}} - k} \right)^2} + {\left( {x + \frac{1}{x} - p} \right)^2} = 0\)Put x = 1, then(2 - k)2 + (2 - p)2 = 0k = 2 and p = 2k/p = 2/2 = 1From OPTION 4.p2 - 322 - 34 - 31 (satisfied)