ANGLE θ to each other:Dot Product is defined as: \(\rm \vec A.\vec B=|\vec A||\vec B|\cos \theta\).Resultant Vector is EQUAL \(\rm \vec A + \vec B\). Work: The work (W) done by a force (\(\rm \vec F\)) in moving (displacing) an object along a vector \(\rm \vec D\) is given by: W = \(\rm \vec F.\vec D=|\vec F||\vec D|\cos \theta\). Calculation:Let's say that the forces ACTING on the particle are \(\rm \vec F_1\) = 3î + 2ĵ + 5k̂ and \(\rm \vec F_2\) = 2î + ĵ - 3k̂.∴ The resulting force acting on the particle will be \(\rm \vec F=\vec F_1+\vec F_2\).⇒ \(\rm \vec F\) = (3î + 2ĵ + 5k̂) + (2î + ĵ - 3k̂)⇒ \(\rm \vec F\) = 5î + 3ĵ + 2k̂.Since the particle is moved from point 2î - ĵ - 3k̂ to the point 4î - 3ĵ + 7k̂, the displacement vector \(\rm \vec D\) will be:\(\rm \vec D\) = (4î - 3ĵ + 7k̂) - (2î - ĵ - 3k̂)⇒ ​\(\rm \vec D\) = 2î - 2ĵ + 10k̂.And finally, the work done W will be:W = \(\rm \vec F.\vec D\) = (5î + 3ĵ + 2k̂).(2î - 2ĵ + 10k̂)⇒ W = (5)(2) + (3)(-2) + (2)(10)⇒ W = 10 - 6 + 20 = 24 units.

"> ANGLE θ to each other:Dot Product is defined as: \(\rm \vec A.\vec B=|\vec A||\vec B|\cos \theta\).Resultant Vector is EQUAL \(\rm \vec A + \vec B\). Work: The work (W) done by a force (\(\rm \vec F\)) in moving (displacing) an object along a vector \(\rm \vec D\) is given by: W = \(\rm \vec F.\vec D=|\vec F||\vec D|\cos \theta\). Calculation:Let's say that the forces ACTING on the particle are \(\rm \vec F_1\) = 3î + 2ĵ + 5k̂ and \(\rm \vec F_2\) = 2î + ĵ - 3k̂.∴ The resulting force acting on the particle will be \(\rm \vec F=\vec F_1+\vec F_2\).⇒ \(\rm \vec F\) = (3î + 2ĵ + 5k̂) + (2î + ĵ - 3k̂)⇒ \(\rm \vec F\) = 5î + 3ĵ + 2k̂.Since the particle is moved from point 2î - ĵ - 3k̂ to the point 4î - 3ĵ + 7k̂, the displacement vector \(\rm \vec D\) will be:\(\rm \vec D\) = (4î - 3ĵ + 7k̂) - (2î - ĵ - 3k̂)⇒ ​\(\rm \vec D\) = 2î - 2ĵ + 10k̂.And finally, the work done W will be:W = \(\rm \vec F.\vec D\) = (5î + 3ĵ + 2k̂).(2î - 2ĵ + 10k̂)⇒ W = (5)(2) + (3)(-2) + (2)(10)⇒ W = 10 - 6 + 20 = 24 units.

">

Forces 3î + 2ĵ + 5k̂ and 2î + ĵ - 3k̂ are acting on a particle and displace it from the point 2î - ĵ - 3k̂ to the point 4î - 3ĵ + 7k̂. The work done by the force is:

General Aptitude Algebra in General Aptitude 1 year ago

  9   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Concept:If two points A and B have position vectors \(\rm \vec A\) and \(\rm \vec B\) respectively, then the vector \(\rm \vec {AB}=\vec B-\vec A\). For two vectors \(\rm \vec A\) and \(\rm \vec B\) at an ANGLE θ to each other:Dot Product is defined as: \(\rm \vec A.\vec B=|\vec A||\vec B|\cos \theta\).Resultant Vector is EQUAL \(\rm \vec A + \vec B\). Work: The work (W) done by a force (\(\rm \vec F\)) in moving (displacing) an object along a vector \(\rm \vec D\) is given by: W = \(\rm \vec F.\vec D=|\vec F||\vec D|\cos \theta\). Calculation:Let's say that the forces ACTING on the particle are \(\rm \vec F_1\) = 3î + 2ĵ + 5k̂ and \(\rm \vec F_2\) = 2î + ĵ - 3k̂.∴ The resulting force acting on the particle will be \(\rm \vec F=\vec F_1+\vec F_2\).⇒ \(\rm \vec F\) = (3î + 2ĵ + 5k̂) + (2î + ĵ - 3k̂)⇒ \(\rm \vec F\) = 5î + 3ĵ + 2k̂.Since the particle is moved from point 2î - ĵ - 3k̂ to the point 4î - 3ĵ + 7k̂, the displacement vector \(\rm \vec D\) will be:\(\rm \vec D\) = (4î - 3ĵ + 7k̂) - (2î - ĵ - 3k̂)⇒ ​\(\rm \vec D\) = 2î - 2ĵ + 10k̂.And finally, the work done W will be:W = \(\rm \vec F.\vec D\) = (5î + 3ĵ + 2k̂).(2î - 2ĵ + 10k̂)⇒ W = (5)(2) + (3)(-2) + (2)(10)⇒ W = 10 - 6 + 20 = 24 units.

User submissions are the sole responsibility of contributors, with TuteeHUB disclaiming liability for accuracy, copyrights, or consequences of use; content is for informational purposes only and not professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.