VECTORS are \(\rm \vec {a}\) and \(\rm \vec {B}\)Magnitude of sum of \(\rm \vec {a}\) and \(\rm \vec {b}\):\(\rm \left|\vec a+\vec b\right| = \sqrt{a^2+b^2+2ab\cosθ}\)Magnitude of difference of \(\rm \vec {a}\) and \(\rm \vec {b}\):\(\rm \left|\vec a-\vec b\right| = \sqrt{a^2+b^2-2ab\cosθ}\)where a, b are magnitude of vectors \(\rm \vec a \text{ and } \vec b\); and θ is angle between them. Calculation:Given:\(\rm \left|\vec a\right|=\alpha\text{, }\left|\vec b\right|=\alpha\text{ and }\left|\vec a+\vec b\right|=\alpha\)As we know,\(\rm \left|\vec a+\vec b\right| = \sqrt{a^2+b^2+2ab\cosθ}\)⇒ \(\rm \alpha = \sqrt{\alpha^2+\alpha^2+2(\alpha)(\alpha)\cosθ}\)⇒ \(\rm \alpha^2 = 2\alpha^2+2\alpha^2\cosθ\)⇒ \(\rm -1=2\cosθ\)⇒ \(\boldsymbol{\rm \cosθ=-\frac{1}{2}}\)Now, \(\rm \left|\vec a-\vec b\right| = \sqrt{a^2+b^2-2ab\cosθ}\)⇒ \(\rm \left|\vec a-\vec b\right| = \sqrt{\alpha^2+\alpha^2-2(\alpha)(\alpha)\cosθ}\)\(∵ \COS θ = -\frac{1}{2}\)⇒ \(\rm \left|\vec a-\vec b\right| = \sqrt{2\alpha^2-2\alpha^2 (\frac{-1}{2})}\)⇒ \(\rm \left|\vec a-\vec b\right| = \sqrt{2\alpha^2+\alpha^2}\)⇒ \(\boldsymbol{\rm \left|\vec a-\vec b\right| = \sqrt{3}\alpha}\)

"> VECTORS are \(\rm \vec {a}\) and \(\rm \vec {B}\)Magnitude of sum of \(\rm \vec {a}\) and \(\rm \vec {b}\):\(\rm \left|\vec a+\vec b\right| = \sqrt{a^2+b^2+2ab\cosθ}\)Magnitude of difference of \(\rm \vec {a}\) and \(\rm \vec {b}\):\(\rm \left|\vec a-\vec b\right| = \sqrt{a^2+b^2-2ab\cosθ}\)where a, b are magnitude of vectors \(\rm \vec a \text{ and } \vec b\); and θ is angle between them. Calculation:Given:\(\rm \left|\vec a\right|=\alpha\text{, }\left|\vec b\right|=\alpha\text{ and }\left|\vec a+\vec b\right|=\alpha\)As we know,\(\rm \left|\vec a+\vec b\right| = \sqrt{a^2+b^2+2ab\cosθ}\)⇒ \(\rm \alpha = \sqrt{\alpha^2+\alpha^2+2(\alpha)(\alpha)\cosθ}\)⇒ \(\rm \alpha^2 = 2\alpha^2+2\alpha^2\cosθ\)⇒ \(\rm -1=2\cosθ\)⇒ \(\boldsymbol{\rm \cosθ=-\frac{1}{2}}\)Now, \(\rm \left|\vec a-\vec b\right| = \sqrt{a^2+b^2-2ab\cosθ}\)⇒ \(\rm \left|\vec a-\vec b\right| = \sqrt{\alpha^2+\alpha^2-2(\alpha)(\alpha)\cosθ}\)\(∵ \COS θ = -\frac{1}{2}\)⇒ \(\rm \left|\vec a-\vec b\right| = \sqrt{2\alpha^2-2\alpha^2 (\frac{-1}{2})}\)⇒ \(\rm \left|\vec a-\vec b\right| = \sqrt{2\alpha^2+\alpha^2}\)⇒ \(\boldsymbol{\rm \left|\vec a-\vec b\right| = \sqrt{3}\alpha}\)

">

If \(\vec{a}, \vec{b}\) and \(\vec{a}+\vec{b}\) are vectors of magnitude α then the magnitude of the vector \(\vec{a}-\vec{b}\) is

General Aptitude Algebra in General Aptitude . 8 months ago

  1.24K   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Concept:Let two VECTORS are \(\rm \vec {a}\) and \(\rm \vec {B}\)Magnitude of sum of \(\rm \vec {a}\) and \(\rm \vec {b}\):\(\rm \left|\vec a+\vec b\right| = \sqrt{a^2+b^2+2ab\cosθ}\)Magnitude of difference of \(\rm \vec {a}\) and \(\rm \vec {b}\):\(\rm \left|\vec a-\vec b\right| = \sqrt{a^2+b^2-2ab\cosθ}\)where a, b are magnitude of vectors \(\rm \vec a \text{ and } \vec b\); and θ is angle between them. Calculation:Given:\(\rm \left|\vec a\right|=\alpha\text{, }\left|\vec b\right|=\alpha\text{ and }\left|\vec a+\vec b\right|=\alpha\)As we know,\(\rm \left|\vec a+\vec b\right| = \sqrt{a^2+b^2+2ab\cosθ}\)⇒ \(\rm \alpha = \sqrt{\alpha^2+\alpha^2+2(\alpha)(\alpha)\cosθ}\)⇒ \(\rm \alpha^2 = 2\alpha^2+2\alpha^2\cosθ\)⇒ \(\rm -1=2\cosθ\)⇒ \(\boldsymbol{\rm \cosθ=-\frac{1}{2}}\)Now, \(\rm \left|\vec a-\vec b\right| = \sqrt{a^2+b^2-2ab\cosθ}\)⇒ \(\rm \left|\vec a-\vec b\right| = \sqrt{\alpha^2+\alpha^2-2(\alpha)(\alpha)\cosθ}\)\(∵ \COS θ = -\frac{1}{2}\)⇒ \(\rm \left|\vec a-\vec b\right| = \sqrt{2\alpha^2-2\alpha^2 (\frac{-1}{2})}\)⇒ \(\rm \left|\vec a-\vec b\right| = \sqrt{2\alpha^2+\alpha^2}\)⇒ \(\boldsymbol{\rm \left|\vec a-\vec b\right| = \sqrt{3}\alpha}\)

Posted on 22 Oct 2024, this text provides information on General Aptitude related to Algebra in General Aptitude. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.