EXTENDED object (rod) where a perpendicular impact will produce no reactive SHOCK at the pivot.Let us consider a rod of length L and mass m and select a pivot point at a distance p from the center of mass. We strike the rod a short blow a distance bi from the center of mass as shownfrom Newtons' second law\({\rm{m}}\FRAC{{\rm{d}}}{{{\rm{dt}}}}{{\rm{V}}_{{\rm{centre\;of\;mass\;}}}} = {\rm{F}}\) .... (I)or \({{\rm{I}}_{{\rm{COM}}}}\frac{{{\rm{d\omega }}}}{{{\rm{dt}}}} = {\rm{F}} \times {{\rm{b}}_{\rm{i}}}\) ....(II)now for any point P at a distance p from the center of mass, the change of its velocity due to the rotation is GIVEN bydVp = dVcom – pdω\(\frac{{d{V_p}}}{{dt}} = \frac{{d{V_{COM}}}}{{dt}} - \frac{{pdw}}{{dt}}\)from equation (I) and (II)\(\frac{{{\rm{d}}{{\rm{V}}_{\rm{p}}}}}{{{\rm{dt}}}} = {\rm{F}}\left( {\frac{1}{{\rm{m}}} - \frac{{{\rm{p}}{{\rm{b}}_{\rm{i}}}}}{{{{\rm{I}}_{{\rm{COM}}}}}}} \right)\) since p is point of center of mass hence\(\frac{{{\rm{d}}{{\rm{V}}_{\rm{p}}}}}{{{\rm{dt}}}}=0\)\({\rm{F}}\left( {\frac{1}{{\rm{m}}} - \frac{{{\rm{p}}{{\rm{b}}_{\rm{i}}}}}{{{{\rm{I}}_{{\rm{COM}}}}}}} \right)=0\)\({b_i} = \frac{{{I_{COM}}}}{{pm}}\) ....(I)since in question, it is given that rod is pivoted at on of their endpoint hence \(p=\frac{l}{2}\)and \({{\rm{I}}_{{\rm{COM}}}} = \frac{1}{{12}}{\rm{m}}{{\rm{l}}^2}\)hence after putting values of ICOM and p in equation (I)\(b_i=\frac{l}{6}\)center of percussion = p + bi center of percussion = \(\frac{l}{2}+\frac{l}{6}\)center of percussion = \(\frac{2l}{3}\)

"> EXTENDED object (rod) where a perpendicular impact will produce no reactive SHOCK at the pivot.Let us consider a rod of length L and mass m and select a pivot point at a distance p from the center of mass. We strike the rod a short blow a distance bi from the center of mass as shownfrom Newtons' second law\({\rm{m}}\FRAC{{\rm{d}}}{{{\rm{dt}}}}{{\rm{V}}_{{\rm{centre\;of\;mass\;}}}} = {\rm{F}}\) .... (I)or \({{\rm{I}}_{{\rm{COM}}}}\frac{{{\rm{d\omega }}}}{{{\rm{dt}}}} = {\rm{F}} \times {{\rm{b}}_{\rm{i}}}\) ....(II)now for any point P at a distance p from the center of mass, the change of its velocity due to the rotation is GIVEN bydVp = dVcom – pdω\(\frac{{d{V_p}}}{{dt}} = \frac{{d{V_{COM}}}}{{dt}} - \frac{{pdw}}{{dt}}\)from equation (I) and (II)\(\frac{{{\rm{d}}{{\rm{V}}_{\rm{p}}}}}{{{\rm{dt}}}} = {\rm{F}}\left( {\frac{1}{{\rm{m}}} - \frac{{{\rm{p}}{{\rm{b}}_{\rm{i}}}}}{{{{\rm{I}}_{{\rm{COM}}}}}}} \right)\) since p is point of center of mass hence\(\frac{{{\rm{d}}{{\rm{V}}_{\rm{p}}}}}{{{\rm{dt}}}}=0\)\({\rm{F}}\left( {\frac{1}{{\rm{m}}} - \frac{{{\rm{p}}{{\rm{b}}_{\rm{i}}}}}{{{{\rm{I}}_{{\rm{COM}}}}}}} \right)=0\)\({b_i} = \frac{{{I_{COM}}}}{{pm}}\) ....(I)since in question, it is given that rod is pivoted at on of their endpoint hence \(p=\frac{l}{2}\)and \({{\rm{I}}_{{\rm{COM}}}} = \frac{1}{{12}}{\rm{m}}{{\rm{l}}^2}\)hence after putting values of ICOM and p in equation (I)\(b_i=\frac{l}{6}\)center of percussion = p + bi center of percussion = \(\frac{l}{2}+\frac{l}{6}\)center of percussion = \(\frac{2l}{3}\)

">

The centre of percussion of a homogenous uniform rod of length l, pivoted at one end, from the pivot is

General Knowledge General Awareness in General Knowledge 8 months ago

  5   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Explanation:The center of percussion is the point on to a pivot EXTENDED object (rod) where a perpendicular impact will produce no reactive SHOCK at the pivot.Let us consider a rod of length L and mass m and select a pivot point at a distance p from the center of mass. We strike the rod a short blow a distance bi from the center of mass as shownfrom Newtons' second law\({\rm{m}}\FRAC{{\rm{d}}}{{{\rm{dt}}}}{{\rm{V}}_{{\rm{centre\;of\;mass\;}}}} = {\rm{F}}\) .... (I)or \({{\rm{I}}_{{\rm{COM}}}}\frac{{{\rm{d\omega }}}}{{{\rm{dt}}}} = {\rm{F}} \times {{\rm{b}}_{\rm{i}}}\) ....(II)now for any point P at a distance p from the center of mass, the change of its velocity due to the rotation is GIVEN bydVp = dVcom – pdω\(\frac{{d{V_p}}}{{dt}} = \frac{{d{V_{COM}}}}{{dt}} - \frac{{pdw}}{{dt}}\)from equation (I) and (II)\(\frac{{{\rm{d}}{{\rm{V}}_{\rm{p}}}}}{{{\rm{dt}}}} = {\rm{F}}\left( {\frac{1}{{\rm{m}}} - \frac{{{\rm{p}}{{\rm{b}}_{\rm{i}}}}}{{{{\rm{I}}_{{\rm{COM}}}}}}} \right)\) since p is point of center of mass hence\(\frac{{{\rm{d}}{{\rm{V}}_{\rm{p}}}}}{{{\rm{dt}}}}=0\)\({\rm{F}}\left( {\frac{1}{{\rm{m}}} - \frac{{{\rm{p}}{{\rm{b}}_{\rm{i}}}}}{{{{\rm{I}}_{{\rm{COM}}}}}}} \right)=0\)\({b_i} = \frac{{{I_{COM}}}}{{pm}}\) ....(I)since in question, it is given that rod is pivoted at on of their endpoint hence \(p=\frac{l}{2}\)and \({{\rm{I}}_{{\rm{COM}}}} = \frac{1}{{12}}{\rm{m}}{{\rm{l}}^2}\)hence after putting values of ICOM and p in equation (I)\(b_i=\frac{l}{6}\)center of percussion = p + bi center of percussion = \(\frac{l}{2}+\frac{l}{6}\)center of percussion = \(\frac{2l}{3}\)

Posted on 18 Nov 2024, this text provides information on General Knowledge related to General Awareness in General Knowledge. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.