DIFFERENCE between the phase and 180°, for an output signal (relative to its input) at zero dB gain.i.e. PM = 180° + ϕg, whereϕg = Phase angle at the gain crossover frequency (ωg)-ωg = frequency at which the MAGNITUDE of G(s) H(s) becomes 1).Calculation:\(G\left( s \right)H\left( s \right) = \frac{1}{{s\left( {s + 1} \right)}}\)SUBSTITUTING s with jω\(\Rightarrow G\left( {j{\rm{ω }}} \right)H\left( {j{\rm{ω }}} \right) = \frac{1}{{j{\rm{ω }}\left( {j{\rm{ω }} + 1} \right)}}\)Magnitude (M) \(= \left| {G\left( {j{\rm{ω }}} \right)H\left( {j{\rm{ω }}} \right)} \right| = \frac{1}{{{\rm{ω }}\SQRT {1 + {{\rm{ω }}^2}} }}\) At the gain cross over frequency ωg, M = 1.\(\Rightarrow 1 = \frac{1}{{{ω _g}\sqrt {ω _g^2 + 1} }} \Rightarrow 1 = \frac{1}{{{\rm{ω }}_{\rm{g}}^2\left( {{\rm{ω }}_g^2 + 1} \right)}}\)⇒ ωg2 (ωg2 + 1) = 1⇒ ωg4 + ωg2 – 1 = 0 …1)Let ωg2 = xEquation 1), becomes x2 + x – 1 = 0. Solving for ‘x’, we get:\(x = \frac{{ - 1 \pm \sqrt {1 + 4} }}{2} = \frac{{ - 1 \pm \sqrt 5 }}{2}\)\(\Rightarrow {\rm{ω }}_{\rm{g}}^2 = \frac{{ - 1 + \sqrt 5 }}{2} \)\({ω _g} = \sqrt {\frac{{ - 1 + \sqrt 5 }}{2}} \)ωg = 0.786 = 1 rad/secNow, the phase at gain crossover frequency ⇒ ϕg\({\phi _g} = - \frac{\pi }{2} - {\tan ^{ - 1}}\left( {{ω _g}} \right)\)\(= - \frac{\pi }{2} - {\tan ^{ - 1}}\left( {1} \right)\)= -135°So, PM (Phase margin) = 180 + ϕg = 180 – 135° = 45°

"> DIFFERENCE between the phase and 180°, for an output signal (relative to its input) at zero dB gain.i.e. PM = 180° + ϕg, whereϕg = Phase angle at the gain crossover frequency (ωg)-ωg = frequency at which the MAGNITUDE of G(s) H(s) becomes 1).Calculation:\(G\left( s \right)H\left( s \right) = \frac{1}{{s\left( {s + 1} \right)}}\)SUBSTITUTING s with jω\(\Rightarrow G\left( {j{\rm{ω }}} \right)H\left( {j{\rm{ω }}} \right) = \frac{1}{{j{\rm{ω }}\left( {j{\rm{ω }} + 1} \right)}}\)Magnitude (M) \(= \left| {G\left( {j{\rm{ω }}} \right)H\left( {j{\rm{ω }}} \right)} \right| = \frac{1}{{{\rm{ω }}\SQRT {1 + {{\rm{ω }}^2}} }}\) At the gain cross over frequency ωg, M = 1.\(\Rightarrow 1 = \frac{1}{{{ω _g}\sqrt {ω _g^2 + 1} }} \Rightarrow 1 = \frac{1}{{{\rm{ω }}_{\rm{g}}^2\left( {{\rm{ω }}_g^2 + 1} \right)}}\)⇒ ωg2 (ωg2 + 1) = 1⇒ ωg4 + ωg2 – 1 = 0 …1)Let ωg2 = xEquation 1), becomes x2 + x – 1 = 0. Solving for ‘x’, we get:\(x = \frac{{ - 1 \pm \sqrt {1 + 4} }}{2} = \frac{{ - 1 \pm \sqrt 5 }}{2}\)\(\Rightarrow {\rm{ω }}_{\rm{g}}^2 = \frac{{ - 1 + \sqrt 5 }}{2} \)\({ω _g} = \sqrt {\frac{{ - 1 + \sqrt 5 }}{2}} \)ωg = 0.786 = 1 rad/secNow, the phase at gain crossover frequency ⇒ ϕg\({\phi _g} = - \frac{\pi }{2} - {\tan ^{ - 1}}\left( {{ω _g}} \right)\)\(= - \frac{\pi }{2} - {\tan ^{ - 1}}\left( {1} \right)\)= -135°So, PM (Phase margin) = 180 + ϕg = 180 – 135° = 45°

">

The gain cross-over frequency and phase margin of the transfer function are \(G(s)=\frac{1}{s(s+1)}\)

General Knowledge General Awareness in General Knowledge . 7 months ago

  345   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Concept:Phase margin is the DIFFERENCE between the phase and 180°, for an output signal (relative to its input) at zero dB gain.i.e. PM = 180° + ϕg, whereϕg = Phase angle at the gain crossover frequency (ωg)-ωg = frequency at which the MAGNITUDE of G(s) H(s) becomes 1).Calculation:\(G\left( s \right)H\left( s \right) = \frac{1}{{s\left( {s + 1} \right)}}\)SUBSTITUTING s with jω\(\Rightarrow G\left( {j{\rm{ω }}} \right)H\left( {j{\rm{ω }}} \right) = \frac{1}{{j{\rm{ω }}\left( {j{\rm{ω }} + 1} \right)}}\)Magnitude (M) \(= \left| {G\left( {j{\rm{ω }}} \right)H\left( {j{\rm{ω }}} \right)} \right| = \frac{1}{{{\rm{ω }}\SQRT {1 + {{\rm{ω }}^2}} }}\) At the gain cross over frequency ωg, M = 1.\(\Rightarrow 1 = \frac{1}{{{ω _g}\sqrt {ω _g^2 + 1} }} \Rightarrow 1 = \frac{1}{{{\rm{ω }}_{\rm{g}}^2\left( {{\rm{ω }}_g^2 + 1} \right)}}\)⇒ ωg2 (ωg2 + 1) = 1⇒ ωg4 + ωg2 – 1 = 0 …1)Let ωg2 = xEquation 1), becomes x2 + x – 1 = 0. Solving for ‘x’, we get:\(x = \frac{{ - 1 \pm \sqrt {1 + 4} }}{2} = \frac{{ - 1 \pm \sqrt 5 }}{2}\)\(\Rightarrow {\rm{ω }}_{\rm{g}}^2 = \frac{{ - 1 + \sqrt 5 }}{2} \)\({ω _g} = \sqrt {\frac{{ - 1 + \sqrt 5 }}{2}} \)ωg = 0.786 = 1 rad/secNow, the phase at gain crossover frequency ⇒ ϕg\({\phi _g} = - \frac{\pi }{2} - {\tan ^{ - 1}}\left( {{ω _g}} \right)\)\(= - \frac{\pi }{2} - {\tan ^{ - 1}}\left( {1} \right)\)= -135°So, PM (Phase margin) = 180 + ϕg = 180 – 135° = 45°

Posted on 12 Nov 2024, this text provides information on General Knowledge related to General Awareness in General Knowledge. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.