PERIODIC signals is to get the harmonics. i.e, nω0 represents the nth harmonic of ω0Procedure to find the period of x1(t) + x2(t) + --------Step1: calculate the individual periods T1, T2, T3, T4 ⋯ ⋯ etcStep2: calculate the ratio like \(\frac{{{T_1}}}{{{T_2}}},\frac{{{T_1}}}{{{T_3}}},\frac{{{T_1}}}{{{T_4}}} \cdots \;etc\)Step3: if the ratios in step2 are rational then periodic.Step4: calculate LCM of denominators in step2Step5: T = LCM × T1Alternative methodCalculate the GCD or HCF of ( T1, T2, T3, T4 ⋯ ⋯ )\({T_1} = \frac{{2\pi }}{{{\omega _1}}},\;{T_2} = \frac{{2\pi }}{{{\omega _2}}} \cdots etc\)ω0 = GCD = 2π / T“T” is the REQUIRED period.\(sinAsinB = \frac{1}{2}\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right]\)\(COSACOSB = \frac{1}{2}\left[ {\cos \left( {A - B} \right) + \cos \left( {A + B} \right)} \right]\)Calculation:Given SIGNAL is X(t) = cos (2 πt) cos (4 πt) – sin (2πt) sin (4πt)It is a combination of two signals.x1(t) = cos (2 πt) cos (4 πt)= ½ [cos(2πt – 4πt) + cos(2πt + 4πt)]= ½ [cos2πt + cos6πt]= ½ cos2πt + ½ cos6πtX2(t) = sin (2πt) sin (4πt)= ½[cos(2πt – 4πt) - cos(2πt + 4πt)]= ½ [cos2πt – cos6πt]= ½ cos2πt – ½ cos6πtNow x(t) will bex(t) = ½ cos2πt + ½ cos6πt –[ ½ cos2πt – ½ cos6πt]x(t) = cos6πtcomparing with x(t) = cosω0tω0 = 6πT = 2π / 6πT = 1/3 sec

"> PERIODIC signals is to get the harmonics. i.e, nω0 represents the nth harmonic of ω0Procedure to find the period of x1(t) + x2(t) + --------Step1: calculate the individual periods T1, T2, T3, T4 ⋯ ⋯ etcStep2: calculate the ratio like \(\frac{{{T_1}}}{{{T_2}}},\frac{{{T_1}}}{{{T_3}}},\frac{{{T_1}}}{{{T_4}}} \cdots \;etc\)Step3: if the ratios in step2 are rational then periodic.Step4: calculate LCM of denominators in step2Step5: T = LCM × T1Alternative methodCalculate the GCD or HCF of ( T1, T2, T3, T4 ⋯ ⋯ )\({T_1} = \frac{{2\pi }}{{{\omega _1}}},\;{T_2} = \frac{{2\pi }}{{{\omega _2}}} \cdots etc\)ω0 = GCD = 2π / T“T” is the REQUIRED period.\(sinAsinB = \frac{1}{2}\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right]\)\(COSACOSB = \frac{1}{2}\left[ {\cos \left( {A - B} \right) + \cos \left( {A + B} \right)} \right]\)Calculation:Given SIGNAL is X(t) = cos (2 πt) cos (4 πt) – sin (2πt) sin (4πt)It is a combination of two signals.x1(t) = cos (2 πt) cos (4 πt)= ½ [cos(2πt – 4πt) + cos(2πt + 4πt)]= ½ [cos2πt + cos6πt]= ½ cos2πt + ½ cos6πtX2(t) = sin (2πt) sin (4πt)= ½[cos(2πt – 4πt) - cos(2πt + 4πt)]= ½ [cos2πt – cos6πt]= ½ cos2πt – ½ cos6πtNow x(t) will bex(t) = ½ cos2πt + ½ cos6πt –[ ½ cos2πt – ½ cos6πt]x(t) = cos6πtcomparing with x(t) = cosω0tω0 = 6πT = 2π / 6πT = 1/3 sec

">

The period of the signal X(t) = cos (2 πt) cos (4 πt) – sin (2πt) sin (4πt) is

General Knowledge General Awareness in General Knowledge 8 months ago

  1.09K   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Concept:Purpose of PERIODIC signals is to get the harmonics. i.e, nω0 represents the nth harmonic of ω0Procedure to find the period of x1(t) + x2(t) + --------Step1: calculate the individual periods T1, T2, T3, T4 ⋯ ⋯ etcStep2: calculate the ratio like \(\frac{{{T_1}}}{{{T_2}}},\frac{{{T_1}}}{{{T_3}}},\frac{{{T_1}}}{{{T_4}}} \cdots \;etc\)Step3: if the ratios in step2 are rational then periodic.Step4: calculate LCM of denominators in step2Step5: T = LCM × T1Alternative methodCalculate the GCD or HCF of ( T1, T2, T3, T4 ⋯ ⋯ )\({T_1} = \frac{{2\pi }}{{{\omega _1}}},\;{T_2} = \frac{{2\pi }}{{{\omega _2}}} \cdots etc\)ω0 = GCD = 2π / T“T” is the REQUIRED period.\(sinAsinB = \frac{1}{2}\left[ {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right]\)\(COSACOSB = \frac{1}{2}\left[ {\cos \left( {A - B} \right) + \cos \left( {A + B} \right)} \right]\)Calculation:Given SIGNAL is X(t) = cos (2 πt) cos (4 πt) – sin (2πt) sin (4πt)It is a combination of two signals.x1(t) = cos (2 πt) cos (4 πt)= ½ [cos(2πt – 4πt) + cos(2πt + 4πt)]= ½ [cos2πt + cos6πt]= ½ cos2πt + ½ cos6πtX2(t) = sin (2πt) sin (4πt)= ½[cos(2πt – 4πt) - cos(2πt + 4πt)]= ½ [cos2πt – cos6πt]= ½ cos2πt – ½ cos6πtNow x(t) will bex(t) = ½ cos2πt + ½ cos6πt –[ ½ cos2πt – ½ cos6πt]x(t) = cos6πtcomparing with x(t) = cosω0tω0 = 6πT = 2π / 6πT = 1/3 sec

Posted on 08 Dec 2024, this text provides information on General Knowledge related to General Awareness in General Knowledge. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.