PUT θ = 45°⇒ √(sec2 45° + COSEC2 45°) × √(TAN2 45° – SIN2 45°)⇒ √(2 + 2) × √[1 – (1/2)]⇒ 2 × [1/√2]⇒ √2Going through OPTION 2sin θ sec2θ = sin 45°.sec2 45° = 1/√2 × (√2)2 = √2Detailed solution∶√(sec2θ + cosec2θ) × √(tan2θ – sin2θ)⇒ √(1/cos2θ + 1/sin2θ) × √(sin2θ/cos2θ – sin2θ)⇒ √[(sin2θ + cos2θ) / (sin2θ.cos2θ)] × √[sin2θ.(1/cos2θ – 1)⇒ √[1/ (sin2θ.cos2θ)] × √[sin2θ.(1 – cos2θ) /cos2θ)⇒ 1/ (sinθ.cosθ) × sin2θ/cosθ⇒ sinθ.sec2θ