PUT θ = 45°⇒ √(sec2 45° + COSEC2 45°) × √(TAN2 45° – SIN2 45°)⇒ √(2 + 2) × √[1 – (1/2)]⇒ 2 × [1/√2]⇒ √2Going through OPTION 2sin θ sec2θ = sin 45°.sec2 45° = 1/√2 × (√2)2 = √2Detailed solution∶√(sec2θ + cosec2θ) × √(tan2θ – sin2θ)⇒ √(1/cos2θ + 1/sin2θ) × √(sin2θ/cos2θ – sin2θ)⇒ √[(sin2θ + cos2θ) / (sin2θ.cos2θ)] × √[sin2θ.(1/cos2θ – 1)⇒ √[1/ (sin2θ.cos2θ)] × √[sin2θ.(1 – cos2θ) /cos2θ)⇒ 1/ (sinθ.cosθ) × sin2θ/cosθ⇒ sinθ.sec2θ

"> PUT θ = 45°⇒ √(sec2 45° + COSEC2 45°) × √(TAN2 45° – SIN2 45°)⇒ √(2 + 2) × √[1 – (1/2)]⇒ 2 × [1/√2]⇒ √2Going through OPTION 2sin θ sec2θ = sin 45°.sec2 45° = 1/√2 × (√2)2 = √2Detailed solution∶√(sec2θ + cosec2θ) × √(tan2θ – sin2θ)⇒ √(1/cos2θ + 1/sin2θ) × √(sin2θ/cos2θ – sin2θ)⇒ √[(sin2θ + cos2θ) / (sin2θ.cos2θ)] × √[sin2θ.(1/cos2θ – 1)⇒ √[1/ (sin2θ.cos2θ)] × √[sin2θ.(1 – cos2θ) /cos2θ)⇒ 1/ (sinθ.cosθ) × sin2θ/cosθ⇒ sinθ.sec2θ

">

The value of √(sec2θ + cosec2θ) × √(tan2θ – sin2θ) is equal to:

General Knowledge General Awareness in General Knowledge 10 months ago

  297   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Short trick∶√(sec2θ + cosec2θ) × √(tan2θ – sin2θ)PUT θ = 45°⇒ √(sec2 45° + COSEC2 45°) × √(TAN2 45° – SIN2 45°)⇒ √(2 + 2) × √[1 – (1/2)]⇒ 2 × [1/√2]⇒ √2Going through OPTION 2sin θ sec2θ = sin 45°.sec2 45° = 1/√2 × (√2)2 = √2Detailed solution∶√(sec2θ + cosec2θ) × √(tan2θ – sin2θ)⇒ √(1/cos2θ + 1/sin2θ) × √(sin2θ/cos2θ – sin2θ)⇒ √[(sin2θ + cos2θ) / (sin2θ.cos2θ)] × √[sin2θ.(1/cos2θ – 1)⇒ √[1/ (sin2θ.cos2θ)] × √[sin2θ.(1 – cos2θ) /cos2θ)⇒ 1/ (sinθ.cosθ) × sin2θ/cosθ⇒ sinθ.sec2θ

Posted on 09 Nov 2024, this text provides information on General Knowledge related to General Awareness in General Knowledge. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.