CONSIDER, I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\SIN x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\) ....(1)I = \(\rm \displaystyle\int_{0}^{\pi/2} \dfrac{\sqrt{\sin (\dfrac{\pi}{2}-x)}}{\sqrt{\sin (\dfrac{\pi}{2}-x)}+ \sqrt{\cos (\dfrac{\pi}{2}-x)}}dx\)I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\cos x}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx\) ....(2)ADDING (1) and (2), we have2I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\cos x}+ \sqrt{sinx}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx\)2I = \(\rm \displaystyle\int_0^{\pi/2}dx\)2I = \(\rm[x]^\frac{\pi}{2}_0\)I = \(\dfrac{\pi}{4}\)