Parse sql select statement to fetch the where clause conditions in python

General Tech Bugs & Fixes 2 years ago

0 2 0 0 0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Posted on 16 Aug 2022, this text provides information on Bugs & Fixes related to General Tech. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Answers (2)

Post Answer
profilepic.png
manpreet Tuteehub forum best answer Best Answer 2 years ago

 

I have a sql query and I want to fetch all the conditions in where clause into a Python dictionary.

e.g.,

import sqlparse

s = "select count(*) from users where employee_type = 'Employee' AND (employment_status = 'Active' OR employment_status = 'On Leave') AND (time_type='Full time' OR country_code <> 'US') AND hire_date < NOW() AND email_work IS NOT NULL AND LENGTH(email_work) > 0 AND NOT (job_profile_id IN ('8802 - Comm Ops - 1', '8801 - CityOps - 2', '10034', '10455', '21014', '21015', '21016', '21018', '21017', '21019') AND country_code = 'IE') AND job_profile_id NOT IN ('20992', '20993', '20994', '20995', '20996', '20997') AND country_code NOT IN ('CN', 'MO', 'SG', 'MY', 'TH', 'VN', 'MM', 'KH', 'PH', 'ID')"

parsed = sqlparse.parse(s)
where = parsed[0][-1]

sql_tokens = []
def get_tokens(where):
    for i in where.tokens:
        try:
            name = i.get_real_name()
            if name and not isinstance(i, sqlparse.sql.Parenthesis):
                # sql_tokens.append("{0} - {1} - {2}".format(str(i), str(name), i.value))
                sql_tokens.append({
                    'key': str(name),
                    'value': i.value,
                })
            else:
                get_tokens(i)
        except Exception as e:
            pass


get_tokens(where)
for i in sql_tokens:
    print i

Following is the output

{'value': u"employee_type = 'Employee'", 'key': 'employee_type'}
{'value': u"employment_status = 'Active'", 'key': 'employment_status'}
{'value': u"employment_status = 'On Leave'", 'key': 'employment_status'}
{'value': u"time_type='Full time'", 'key': 'time_type'}
{'value': u"country_code <> 'US'", 'key': 'country_code'}
{'value': u'hire_date < NOW()', 'key': 'hire_date'}
{'value': u'email_work', 'key': 'email_work'}
{'value': u'LENGTH(email_work) > 0', 'key': 'LENGTH'}
{'value': u'job_profile_id', 'key': 'job_profile_id'}
{'value': u"country_code = 'IE'", 'key': 'country_code'}
{'value': u'job_profile_id', 'key': 'job_profile_id'}
{'value': u'country_code', 'key': 'country_code'}

The problem here is with the IN operator. Check job_profile_id, it doesn't contain

profilepic.png
manpreet 2 years ago

 

This is because the tree structure is different for IN keywords and comparisons. For example, a comparison includes the entire expression underneath it in the tree.

If you use parsed[0]._pprint_tree() you can see everything nested under a Comparison node:

   |- 2 Comparison 'employ...'
   |  |- 0 Identifier 'employ...'
   |  |  `- 0 Name 'employ...'
   |  |- 1 Whitespace ' '
   |  |- 2 Comparison '='
   |  |- 3 Whitespace ' '
   |  `- 4 Single ''Emplo...'

However, the NOT IN clause is a series of sequential nodes:

   |- 36 Identifier 'job_pr...'
   |  `- 0 Name 'job_pr...'
   |- 37 Whitespace ' '
   |- 38 Keyword 'NOT'
   |- 39 Whitespace ' '
   |- 40 Keyword 'IN'
   |- 41 Whitespace ' '
   |- 42 Parenthesis '('2099...'
   |  |- 0 Punctuation '('
   |  |- 1 IdentifierList ''20992...'
   |  |  |- 0 Single "'20992'"
   |  |  |- 1 Punctuation ','
   |  |  |- 2 Whitespace ' '
   |  |  |- 3 Single "'20993'"
   |  |  |- 4 Punctuation ','
   |  |  |- 5 Whitespace ' '
   |  |  |- 6 Single "'20994'"
   |  |  |- 7 Punctuation ','
   |  |  |- 8 Whitespace ' '
   |  |  |- 9 Single "'20995'"
   |  |  |- 10 Punctuation ','
   |  |  |- 11 Whitespace ' '
   |  |  |- 12 Single "'20996'"
   |  |  |- 13 Punctuation ','
   |  |  |- 14 Whitespace ' '
   |  |  `- 15 Single "'20997'"
   |  `- 2 Punctuation ')'

Your best bet is to watch for identifiers, then jump ahead and save the value of the next parenthesis node. While this doesn't handle every possible situation, it does handle your SQL statement and returns the value of job_profile_id.

Here's my modified code:

import sqlparse

s = "select count(*) from users where employee_type = 'Employee' AND (employment_status = 'Active' OR employment_status = 'On Leave') AND (time_type='Full time' OR country_code <> 'US') AND hire_date < NOW() AND email_work IS NOT NULL AND LENGTH(email_work) > 0 AND NOT (job_profile_id IN ('8802 - Comm Ops - 1', '8801 - CityOps - 2', '10034', '10455', '21014', '21015', '21016', '21018', '21017', '21019') AND country_code = 'IE') AND job_profile_id NOT IN ('20992', '20993', '20994', '20995', '20996', '20997') AND country_code NOT IN ('CN', 'MO', 'SG', 'MY', 'TH', 'VN', 'MM', 'KH', 'PH', 'ID')"

parsed = sqlparse.parse(s)
where = parsed[0][-1]

sql_tokens = []
def get_tokens(where):
    identifier = None
    for i in where.tokens:
        try:
            name = i.get_real_name()
            if name and isinstance(i, sqlparse.sql.Identifier):
                identifier = i
            elif identifier and isinstance(i, sqlparse.sql.Parenthesis):
                sql_tokens.append({
                    'key': str(identifier),
                    'value': token.value
                })
            elif name:
                identifier = None
                # sql_tokens.append("{0} - {1} - {2}".format(str(i), str(name), i.value))
                sql_tokens.append({
                    'key': str(name),
                    'value': u''.join(token.value for token in i.flatten()),
                })
            else:
                get_tokens(i)
        except Exception as e:
            pass

get_tokens(where)
print sql_tokens

0 views   0 shares

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.