WEBER\;Number = \FRAC{{Inertia\;force}}{{Surface\;tension\;force}}\)\(Reynold's\;number = \frac{{Inertia\;force}}{{Viscous\;force}}\)\(Mach\;number = \frac{{Inertia\;force}}{{Elastic\;force}}\)\(Euler's\;number = \frac{{Inertia\;force}}{{Pressure\;force}}\)\(Froude\;number = \frac{{Inertia\;force}}{{Gravity\;force}}\)BIOT number → Ratio of internal thermal resistance to boundary layer thermal resistanceGrashof number → Ratio of buoyancy to viscous forcePrandtl number → Ratio of momentum diffusivity (ν) and thermal diffusivity (α). Pr =ν/α REYNOLDS number → Ratio of inertia force to viscous forceNusselt number → Ratio of Convective heat transfer to Conduction heat transfer\(Nu = \frac{{h{L_c}}}{K}\)

"> WEBER\;Number = \FRAC{{Inertia\;force}}{{Surface\;tension\;force}}\)\(Reynold's\;number = \frac{{Inertia\;force}}{{Viscous\;force}}\)\(Mach\;number = \frac{{Inertia\;force}}{{Elastic\;force}}\)\(Euler's\;number = \frac{{Inertia\;force}}{{Pressure\;force}}\)\(Froude\;number = \frac{{Inertia\;force}}{{Gravity\;force}}\)BIOT number → Ratio of internal thermal resistance to boundary layer thermal resistanceGrashof number → Ratio of buoyancy to viscous forcePrandtl number → Ratio of momentum diffusivity (ν) and thermal diffusivity (α). Pr =ν/α REYNOLDS number → Ratio of inertia force to viscous forceNusselt number → Ratio of Convective heat transfer to Conduction heat transfer\(Nu = \frac{{h{L_c}}}{K}\)

">

Match the following non-dimensional numbers the corresponding definitions:Non-dimensional numberDefinitionPReynolds number1(Buoyancy force)/ (Viscous force)QGrashof number2(Momentum diffusivity)/ (Thermal diffusivity)RNusselt number3(Inertia force)/ (Viscous force)SPrandtl number4(Convective heat transfer)/ (Conduction heat transfer)

Heat Transfer Laminar Flow in Heat Transfer 11 months ago

  1.71K   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Different dimensionless numbers:\(WEBER\;Number = \FRAC{{Inertia\;force}}{{Surface\;tension\;force}}\)\(Reynold's\;number = \frac{{Inertia\;force}}{{Viscous\;force}}\)\(Mach\;number = \frac{{Inertia\;force}}{{Elastic\;force}}\)\(Euler's\;number = \frac{{Inertia\;force}}{{Pressure\;force}}\)\(Froude\;number = \frac{{Inertia\;force}}{{Gravity\;force}}\)BIOT number → Ratio of internal thermal resistance to boundary layer thermal resistanceGrashof number → Ratio of buoyancy to viscous forcePrandtl number → Ratio of momentum diffusivity (ν) and thermal diffusivity (α). Pr =ν/α REYNOLDS number → Ratio of inertia force to viscous forceNusselt number → Ratio of Convective heat transfer to Conduction heat transfer\(Nu = \frac{{h{L_c}}}{K}\)

Posted on 03 Nov 2024, this text provides information on Heat Transfer related to Laminar Flow in Heat Transfer. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.