SIN (x+y)\left\{ 1+\frac{dy}{dx} \right\}\] \[=-\frac{\sin (x+y)}{1+\sin (x+y)}=-\frac{1}{2}\] \[\RIGHTARROW \sin (x+y)=1,\] so \[\cos (x+y)=0\] \[\therefore \] from \[(1)y=0\] and \[(x+y)=2n\pi +\frac{\pi }{2}\] TANGENT at \[\left( \frac{\pi }{2},0 \right)\] is \[x+2y=\frac{\pi }{2}\]