R=0}^{50}{{}^{50}{{C}_{r}}{{x}^{r}}}\]. Therefore, sum of COEFFICIENTS of odd power of x = \[{}^{50}{{C}_{1}}+{}^{50}{{C}_{3}}+...+{}^{50}{{C}_{49}}\] = \[\frac{1}{2}[{}^{50}{{C}_{0}}+{}^{50}{{C}_{1}}+...+{}^{50}{{C}_{50}}]\,\,=\,\,\frac{1}{2}[{{2}^{50}}]={{2}^{49}}\].