COS C\cos (A-B)}{1+\cos (A-C)\cos B}=\frac{1-\cos (A+B)\cos (A-B)}{1-\cos (A-C)\cos (A+C)}\] Þ \[\frac{1-{{\cos }^{2}}A+{{\SIN }^{2}}B}{1-{{\cos }^{2}}A+{{\sin }^{2}}C}=\frac{{{\sin }^{2}}A+{{\sin }^{2}}B}{{{\sin }^{2}}A+{{\sin }^{2}}C}=\frac{{{a}^{2}}+{{b}^{2}}}{{{a}^{2}}+{{c}^{2}}}\].