B}^{2}}-{{c}^{2}})\COT A=({{b}^{2}}-{{c}^{2}})\frac{\COS A}{\sin A}=\frac{({{b}^{2}}-{{c}^{2}})({{b}^{2}}+{{c}^{2}}-{{a}^{2}})}{2bc.ka}\] Hence L.H.S. \[=\frac{1}{2k\,\,ABC}\] \[[({{b}^{4}}-{{c}^{4}})+({{c}^{4}}-{{a}^{4}})+({{a}^{4}}-{{b}^{4}})-\{{{a}^{2}}({{b}^{2}}-{{c}^{2}})\] \[+{{b}^{2}}({{c}^{2}}-{{a}^{2}})+{{c}^{2}}({{a}^{2}}-{{b}^{2}})\}]=0\].