MU }_{1}}\,\sin {{\theta }_{1}}={{\mu }_{2}}\,\sin {{\theta }_{2}}\] \[\cos {{\theta }_{1}}=\frac{10}{\SQRT{{{(6\sqrt{3})}^{2}}+{{(8\sqrt{3})}^{2}}+100}}\] \[=\frac{10}{\sqrt{400}}=\frac{10}{20}\] \[\Rightarrow \] \[{{\theta }_{1}}={{60}^{o}}\] \[\sqrt{2}\,\sin {{60}^{o}}\,=\sqrt{3}\,\sin {{\theta }_{2}}\] \[\Rightarrow \] \[\sqrt{2}\times \frac{\sqrt{3}}{2}=\sqrt{3}\sin {{\theta }_{2}}\] \[\Rightarrow \] \[\sin {{\theta }_{2}}=\frac{1}{\sqrt{2}}\,\Rightarrow \,\,\,{{\theta }_{2}}={{45}^{o}}\]