HG}}\times G\]\[=(75-50)\times {{10}^{-2}}\times {{\rho }_{Hg}}\times g\] ?(i) and pressure difference due to h meter of air DP =\[h\times {{\rho }_{air}}\times g\] ?(II) By equating (i) and (ii) we get \[h\times {{\rho }_{air}}\times g=(75-50)\times {{10}^{-2}}\times {{\rho }_{Hg}}\times g\] \[\THEREFORE \ h=25\times {{10}^{-2}}\left( \frac{{{\rho }_{Hg}}}{{{\rho }_{air}}} \right)\]\[=25\times {{10}^{-2}}\times {{10}^{4}}=2500\,m\] \ HEIGHT of the hill = 2.5 km.