P}}{{v}^{q}}{{h}^{k}}\]. The DIMENSIONS of right-hand rule and left-hand SIDE terms should be equal. So \[[{{M}^{0}}L{{T}^{0}}]={{[M]}^{p}}{{[L{{T}^{-1}}]}^{q}}{{[M{{L}^{2}}{{T}^{-1}}]}^{r}}\] Or \[[{{M}^{0}}L{{T}^{0}}]=[{{M}^{p+r}}][{{L}^{q+2r}}][{{T}^{-q-r}}]\] Now , compare powers of M, L and T, we GET p+r=0 ...(i) q+2r=1 ...(ii) -q-r=0 ...(iii) After solving p=-1, q=-1 and r=1 putting these VALUES, we get