X [(∀z z|x ⇒ ((z=x) ∨ (z=1))) ⇒ ∃w (w > x) ∧ (∀z z|w ⇒((w=z) V (z=1)))]LET, X ≡ (∀z z|x ⇒ ((z =x) ∨ (z=1)))Y ≡ ∃w (w > x)Z ≡ (∀z z|w ⇒ ((w = z) ∨ (z=1))∀x [X ⇒ Y ⇒ Z]X is true: If x is prime numberY is true: If there exist a w which is greater than xZ is true. If w is primeS1 = {1,2,3, ... , 100}Let x = 97z = 97∴ z|x ⇒ (z = 1) ≡ T ⇒ T ≡ Tprime number greater than 97 is 101But S1 is not included in set. HENCE there doesn’t exist w which is greater than xT ⇒ F.Z ≡ T ⇒ F ≡ FTherefore, S1 does not satisfy φS2. Set of all positive integers satisfy φS3. Set of all integersIf x is negative, X ≡ TF ⇒ Y.Z ≡ TAlso, set of all positive integers satisfy φTherefore, OPTION 3 is correct.