Set of all real values of x satisfying the inequality 4(ln x)^3 -8(ln x)^2 - 11(en x) + 15<=0 is(a, e^-b]U[e^c,e^d] and I = a^2+ b^2 + c^2 + d^2.If [.] represents greatest integer function, then [l] is equal to(A) 5(B) 7 (C) 8(D) 9​

Math Secondary School in Math 8 months ago

  1.95K   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

We're given the inequality,

\longrightarrow 4(\ln x)^3-8(\ln x)^2-11\ln x+15\leq0

Let us solve this inequality first.

We can see the equality holds TRUE for \ln x=1.

So we can divide our inequality by \ln x-1 like,

\longrightarrow 4(\ln x)^3-4(\ln x)^2-4(\ln x)^2+4\ln x-15\ln x+15\leq0

\longrightarrow 4(\ln x)^2\left(\ln x-1\right)-4\ln x\left(\ln x-1\right)-15\left(\ln x-1\right)\leq0

\longrightarrow\left(4(\ln x)^2-4\ln x-15\right)\left(\ln x-1\right)\leq0

\longrightarrow\left(4(\ln x)^2-10\ln x+6\ln x-15\right)\left(\ln x-1\right)\leq0

\longrightarrow\left(2\ln x\left(2\ln x-5\right)+3(2\ln x-5)\right)\left(\ln x-1\right)\leq0

\longrightarrow\left(2\ln x+3\right)\left(2\ln x-5\right)\left(\ln x-1\right)\leq0

Now the whole LHS is factorised here and we can apply wavy curve method, for \ln x.

\setlength{\unitlength}{1.5mm}\begin{picture}(5,5)\thicklines\put(0,0){\vector(1,0){60}}\multiput(15,0)(15,0){3}{\circle*{1}}\put(13,-4){$-\frac{3}{2}$}\put(29.5,-4){$1$}\put(43,-4){$\frac{5}{2}$}\put(60,-3){$\ln x$}\qbezier(45,0)(52.5,5)(60,10)\qbezier(30,0)(37.5,-5)(45,0)\qbezier(15,0)(22.5,5)(30,0)\qbezier(0,-10)(7.5,-5)(15,0)\end{picture}

So the condition for \ln x to satisfy our inequality is given by this wavy curve as,

\longrightarrow\ln x\in\left(-\infty,\ -\dfrac{3}{2}\right]\cup\left[1,\ \dfrac{5}{2}\right]

Taking antilog (possible since e^x is an increasing function),

\longrightarrow x\in\left(e^{-\infty},\ e^{-\frac{3}{2}}\right]\cup\left[e^1,\ e^{\frac{5}{2}}\right]

\longrightarrow x\in\left(0,\ e^{-\frac{3}{2}}\right]\cup\left[e,\ e^{\frac{5}{2}}\right]\quad\quad\dots(1)

But in the QUESTION, the solution is given as,

\longrightarrow x\in\left(a,\ e^{-b}\right]\cup\left[e^c,\ e^d\right]\quad\quad\dots(2)

COMPARING (1) and (2) we GET,

  • a=0
  • b=\dfrac{3}{2}
  • c=1
  • d=\dfrac{5}{2}

So,

\longrightarrow I=a^2+b^2+c^2+d^2

\longrightarrow I=0^2+\left(\dfrac{3}{2}\right)^2+1^2+\left(\dfrac{5}{2}\right)^2

\longrightarrow I=\dfrac{38}{4}

\longrightarrow I=9.5

\longrightarrow\underline{\underline{[I]=9}}

Hence (D) is the ANSWER.

Posted on 23 Oct 2024, this text provides information on Math related to Secondary School in Math. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.