TAN \theta -\COT \theta =a\] ?..(i) and \[\sin \theta +\cos \theta =b\] ?..(ii) Now \[{{({{b}^{2}}-1)}^{2}}({{a}^{2}}+4)\] \[={{\left\{ {{(\sin \theta +\cos \theta )}^{2}}-1 \right\}}^{2}}\left\{ {{(\tan \theta -\cot \theta )}^{2}}+4 \right\}\] \[={{[1+\sin 2\theta -1]}^{2}}[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta -2+4]\] \[={{\sin }^{2}}2\theta (\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta )\] \[=4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left[ \frac{1}{{{\sin }^{2}}\theta }+\frac{1}{{{\cos }^{2}}\theta } \right]=4\]. Trick: Obviously the VALUE of expression \[{{({{b}^{2}}-1)}^{2}}({{a}^{2}}+4)\] is independent of \[\theta \], therefore put any suitable value of \[\theta \]. LET \[\theta =45{}^\circ \], we get \[a=0,\ b=\sqrt{2}\]so that \[{{[{{(\sqrt{2})}^{2}}-1]}^{2}}\] \[({{0}^{2}}+4)=4.\]

"> TAN \theta -\COT \theta =a\] ?..(i) and \[\sin \theta +\cos \theta =b\] ?..(ii) Now \[{{({{b}^{2}}-1)}^{2}}({{a}^{2}}+4)\] \[={{\left\{ {{(\sin \theta +\cos \theta )}^{2}}-1 \right\}}^{2}}\left\{ {{(\tan \theta -\cot \theta )}^{2}}+4 \right\}\] \[={{[1+\sin 2\theta -1]}^{2}}[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta -2+4]\] \[={{\sin }^{2}}2\theta (\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta )\] \[=4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left[ \frac{1}{{{\sin }^{2}}\theta }+\frac{1}{{{\cos }^{2}}\theta } \right]=4\]. Trick: Obviously the VALUE of expression \[{{({{b}^{2}}-1)}^{2}}({{a}^{2}}+4)\] is independent of \[\theta \], therefore put any suitable value of \[\theta \]. LET \[\theta =45{}^\circ \], we get \[a=0,\ b=\sqrt{2}\]so that \[{{[{{(\sqrt{2})}^{2}}-1]}^{2}}\] \[({{0}^{2}}+4)=4.\]

">

If \[\tan \theta -\cot \theta =a\] and \[\sin \theta +\cos \theta =b,\] then \[{{({{b}^{2}}-1)}^{2}}({{a}^{2}}+4)\] is equal to [WB JEE 1979]

Mathematics Trigonometric Identities in Mathematics 1 year ago

  6   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Given that \[\TAN \theta -\COT \theta =a\] ?..(i) and \[\sin \theta +\cos \theta =b\] ?..(ii) Now \[{{({{b}^{2}}-1)}^{2}}({{a}^{2}}+4)\] \[={{\left\{ {{(\sin \theta +\cos \theta )}^{2}}-1 \right\}}^{2}}\left\{ {{(\tan \theta -\cot \theta )}^{2}}+4 \right\}\] \[={{[1+\sin 2\theta -1]}^{2}}[{{\tan }^{2}}\theta +{{\cot }^{2}}\theta -2+4]\] \[={{\sin }^{2}}2\theta (\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta )\] \[=4{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left[ \frac{1}{{{\sin }^{2}}\theta }+\frac{1}{{{\cos }^{2}}\theta } \right]=4\]. Trick: Obviously the VALUE of expression \[{{({{b}^{2}}-1)}^{2}}({{a}^{2}}+4)\] is independent of \[\theta \], therefore put any suitable value of \[\theta \]. LET \[\theta =45{}^\circ \], we get \[a=0,\ b=\sqrt{2}\]so that \[{{[{{(\sqrt{2})}^{2}}-1]}^{2}}\] \[({{0}^{2}}+4)=4.\]

User submissions are the sole responsibility of contributors, with TuteeHUB disclaiming liability for accuracy, copyrights, or consequences of use; content is for informational purposes only and not professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.