LET \[f(X)=\sin \theta +\COS \theta =\sqrt{2}\sin \LEFT( \theta +\frac{\pi }{4} \right)\] But\[-1\le \sin \left( \theta +\frac{\pi }{2} \right)\le 1\RIGHTARROW -\sqrt{2}\le \sqrt{2}\sin \left( \theta +\frac{\pi }{4} \right)\le \sqrt{2}\]. Hence the maximum value of \[(\sin \theta +\cos \theta )\] i.e., of \[\sqrt{2}\sin \left( \theta +\frac{\pi }{4} \right)=\sqrt{2}\]. \[\therefore \]\[\sin \left( \theta +\frac{\pi }{4} \right)=1\Rightarrow \sin \left( \theta +\frac{\pi }{4} \right)=\sin \frac{\pi }{2}\] Þ \[\theta +\frac{\pi }{4}=\frac{\pi }{2}\Rightarrow \theta =\frac{\pi }{4}={{45}^{o}}\]. "> LET \[f(X)=\sin \theta +\COS \theta =\sqrt{2}\sin \LEFT( \theta +\frac{\pi }{4} \right)\] But\[-1\le \sin \left( \theta +\frac{\pi }{2} \right)\le 1\RIGHTARROW -\sqrt{2}\le \sqrt{2}\sin \left( \theta +\frac{\pi }{4} \right)\le \sqrt{2}\]. Hence the maximum value of \[(\sin \theta +\cos \theta )\] i.e., of \[\sqrt{2}\sin \left( \theta +\frac{\pi }{4} \right)=\sqrt{2}\]. \[\therefore \]\[\sin \left( \theta +\frac{\pi }{4} \right)=1\Rightarrow \sin \left( \theta +\frac{\pi }{4} \right)=\sin \frac{\pi }{2}\] Þ \[\theta +\frac{\pi }{4}=\frac{\pi }{2}\Rightarrow \theta =\frac{\pi }{4}={{45}^{o}}\]. ">

The value of \[\sin \theta +\cos \theta \] will be greatest when [MNR 1977, 1983; RPET 1995]

Mathematics Trigonometric Identities in Mathematics 1 year ago

  11   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating
LET \[f(X)=\sin \theta +\COS \theta =\sqrt{2}\sin \LEFT( \theta +\frac{\pi }{4} \right)\] But\[-1\le \sin \left( \theta +\frac{\pi }{2} \right)\le 1\RIGHTARROW -\sqrt{2}\le \sqrt{2}\sin \left( \theta +\frac{\pi }{4} \right)\le \sqrt{2}\]. Hence the maximum value of \[(\sin \theta +\cos \theta )\] i.e., of \[\sqrt{2}\sin \left( \theta +\frac{\pi }{4} \right)=\sqrt{2}\]. \[\therefore \]\[\sin \left( \theta +\frac{\pi }{4} \right)=1\Rightarrow \sin \left( \theta +\frac{\pi }{4} \right)=\sin \frac{\pi }{2}\] Þ \[\theta +\frac{\pi }{4}=\frac{\pi }{2}\Rightarrow \theta =\frac{\pi }{4}={{45}^{o}}\].

User submissions are the sole responsibility of contributors, with TuteeHUB disclaiming liability for accuracy, copyrights, or consequences of use; content is for informational purposes only and not professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.