Speak now
Please Wait Image Converting Into Text...
Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
Maths Miscellaneous in Maths . 1 month ago
Algorithmic information theory (AIT) is a branch of theoretical computer science that concerns itself with the relationship between computation and information of computably generated objects (as opposed to stochastically generated), such as strings or any other data structure. In other words, it is shown within algorithmic information theory that computational incompressibility "mimics" (except for a constant that only depends on the chosen universal programming language) the relations or inequalities found in information theory. According to Gregory Chaitin, it is "the result of putting Shannon's information theory and Turing's computability theory into a cocktail shaker and shaking vigorously."
Besides the formalization of a universal measure for irreducible information content of computably generated objects, some main achievements of AIT were to show that: in fact algorithmic complexity follows (in the self-delimited case) the same inequalities (except for a constant) that entropy does, as in classical information theory; randomness is incompressibility; and, within the realm of randomly generated software, the probability of occurrence of any data structure is of the order of the shortest program that generates it when running on a universal machine.
AIT principally studies measures of irreducible information content of strings (or other data structures). Because most mathematical objects can be described in terms of strings, or as the limit of a sequence of strings, it can be used to study a wide variety of mathematical objects, including integers. One of the main motivations behind AIT is the very study of the information carried by mathematical objects as in the field of metamathematics, e.g., as shown by the incompleteness results mentioned below. Other main motivations came from: surpassing the limitations of classical information theory for single and fixed objects; formalizing the concept of randomness; and finding a meaningful probabilistic inference without prior knowledge of the probability distribution (e.g., whether it is independent and identically distributed, Markovian, or even stationary). In this way, AIT is known to be basically founded upon three main mathematical concepts and the relations between them: algorithmic complexity, algorithmic randomness, and algorithmic probability.
Posted on 29 Nov 2024, this text provides information on Maths related to Miscellaneous in Maths. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
Answers
No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.
Ready to take your education and career to the next level? Register today and join our growing community of learners and professionals.