Speak now
Please Wait Image Converting Into Text...
Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
Maths Miscellaneous in Maths . 2 weeks ago
In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable X {\displaystyle X} , or just distribution function of X {\displaystyle X} , evaluated at x {\displaystyle x} , is the probability that X {\displaystyle X} will take a value less than or equal to x {\displaystyle x} .
Every probability distribution supported on the real numbers, discrete or "mixed" as well as continuous, is uniquely identified by an upwards continuous monotonic increasing cumulative distribution function F : R → [ 0 , 1 ] {\displaystyle F:\mathbb {R} \rightarrow [0,1]} satisfying lim x → − ∞ F ( x ) = 0 {\displaystyle \lim _{x\rightarrow -\infty }F(x)=0} and lim x → ∞ F ( x ) = 1 {\displaystyle \lim _{x\rightarrow \infty }F(x)=1} .
In the case of a scalar continuous distribution, it gives the area under the probability density function from minus infinity to x {\displaystyle reference
Posted on 27 Dec 2024, this text provides information on Maths related to Miscellaneous in Maths. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
Answers
No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.
Ready to take your education and career to the next level? Register today and join our growing community of learners and professionals.