POTENTIAL energy of the system is \[{{U}_{D}}-{{U}_{C}}\] as discussed under. When charge \[{{q}_{3}}\] is at C, then its potential energy is \[{{U}_{C}}=\frac{1}{4\pi {{\varepsilon }_{0}}}\LEFT( \frac{{{q}_{1}}\,{{q}_{3}}}{0.4}+\frac{{{q}_{2}}\,{{q}_{3}}}{0.5} \right)\] When charge Q3 is at D, then \[{{U}_{D}}=\frac{1}{4\pi {{\varepsilon }_{0}}}\left( \frac{{{q}_{1}}\,{{q}_{3}}}{0.4}+\frac{{{q}_{2}}\,{{q}_{3}}}{0.1} \right)\] Hence, change in potential energy \[\Delta U={{U}_{D}}-{{U}_{C}}\] \[=\frac{1}{4\pi {{\varepsilon }_{0}}}\left( \frac{{{q}_{2}}\,{{q}_{3}}}{0.1}-\frac{{{q}_{2}}\,{{q}_{3}}}{0.5} \right)\] but \[\Delta U=\frac{{{q}_{3}}}{4\pi {{\varepsilon }_{0}}}K\] \[\therefore \] \[\frac{{{q}_{3}}}{4\pi {{\varepsilon }_{0}}}k=\frac{1}{4\pi {{\varepsilon }_{0}}}\,\left( \frac{{{q}_{2}}\,{{q}_{3}}}{0.1}-\frac{{{q}_{2}}\,{{q}_{3}}}{0.5} \right)\] \[\RIGHTARROW \] \[k={{q}_{2}}\,(10-2)=8{{q}_{2}}\]