C] \[{{W}_{1}}\int_{0}^{a}{\overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{dx}}\,}=\int_{0}^{a}{-K(y\hat{i}-x\hat{j}).\hat{i}dx}\] \[=\int_{0}^{a}{-k(0\hat{i}}+x\hat{j}).\hat{i}dx=zero\] \[W\int_{0}^{a}{\overset{\to }{\mathop{F}}\,.\overset{\to }{\mathop{dy}}\,}=\int_{0}^{a}{-k(y\hat{i}}+x\hat{j}).\hat{j}dy\] \[=\int_{0}^{a}{-k(a\hat{i}}+a\hat{j}).\hat{j}dy\] \[=-ka\int_{0}^{a}{dy=-k{{a}^{2}}}\] Total WORK DONE, \[W={{W}_{1}}+{{W}_{2}}=0-k{{a}^{2}}=-k{{a}^{2}}\]