PARALLEL capacitor, \[F=qE=q\left[ \frac{\sigma }{2{{\varepsilon }_{0}}} \right]\] \[\because \] Surface CHARGE density \[\sigma =\frac{\sigma }{A}\] \[\therefore \] \[F=q\left[ \frac{q}{2A{{\varepsilon }_{0}}} \right]\Rightarrow F=\frac{{{q}^{2}}}{2A{{\varepsilon }_{0}}}\] So, net charge ACROSS a capacitor, \[q=CV\] \[F=\frac{{{C}^{2}}{{V}^{2}}}{2A{{\varepsilon }_{0}}}\] \[\left[ C=\frac{A{{\varepsilon }_{0}}}{d} \right]\] \[F=\frac{\left( \frac{A{{\varepsilon }_{0}}}{d} \right)\times C{{V}^{2}}}{2A{{\varepsilon }_{0}}}=\frac{C{{V}^{2}}}{2d}\]