What is European Spallation Source mean? The European Spallation Source ERIC (ESS) is a multi-disciplinary research facility based on the world's most powerful pulsed neutron source. It is currently under construction in Lund, Sweden. The ESS Data Management and Software Centre (DMSC) will be located in Copenhagen, Denmark. The 13 European member countries act as partners in the construction and operation of ESS. ESS will start the scientific user programme in 2023, and the construction phase will be complete by 2025. ESS is the world's most powerful next-generation neutron source, and will enable scientists to see and understand basic atomic structures and forces at length and time scales unachievable at other neutron sources.
The research infrastructure, owned by 13 European nations, is built close to the Max IV Laboratory. The colocation of powerful neutron and x-ray facilities is a productive strategy (e.g. the Institut Laue–Langevin with the European Synchrotron Radiation Facility; the ISIS Neutron and Muon Source with the Diamond Light Source), because much of the knowledge, technical infrastructure, and scientific methods associated with neutron and x-ray technologies are similar.
The construction of the facility began in the summer of 2014 and the first science results produced are planned for 2023. Scientists and engineers from more than 100 partner laboratories are working on updating and optimising the advanced technical design of the ESS facility, and at the same time are exploring how to maximise its research potential. These partner laboratories, universities and research institutes are also contributing human resources, knowledge, equipment, and financial support through In-Kind Contributions.
ESS will use nuclear spallation, a process in which neutrons are liberated from heavy elements by high energy protons. This is intrinsically a much safer process than uranium fission. Unlike existing facilities, the ESS is neither a "short pulse" (micro-seconds) spallation source, nor a continuous source like the SINQ facility in Switzerland, but the first example of a "long pulse" source (milli-seconds) .
The future facility is composed of a linear accelerator in which protons are accelerated and collide with a rotating, helium-cooled tungsten target. By this process, intense pulses of neutrons are generated. Surrounding the tungsten are baths of cryogenic hydrogen which feed supermirror guides. These operate in a similar way to optical fibres, directing the intense beams of neutrons to experimental stations, where research is done on different materials. Many of the instruments benefit from more than a decade of development, and several of the designs are unique in order to maximise the benefits of the long pulse.
Neutron scattering can be applied to a range of scientific questions, spanning the realms of physics, chemistry, geology, biology and medicine. Neutrons serve as a unique probe for revealing the structure and function of matter from the microscopic down to the atomic scale. Using neutrons for research enables us to investigate the world around us as well as to develop new materials and processes to meet the needs of society. Neutrons are frequently used to address the grand challenges, to improve and develop new solutions for health, the environment, clean energy, IT and more.
ESS became a European Research Infrastructure Consortium, or ERIC, on 1 October 2015. The European Spallation Source ERIC is "a joint European organisation committed to constructing and operating the world's leading facility for research using neutrons."
ESS is designed to be carbon-neutral and is expected to reduce CO2 emissions in the region.
Though it is just over half way through the construction project, the ESS is already a scientifically productive organisation. Many world-leading experts are either directly employed or linked to the project via collaborations, and working on pressing societal problems. Examples include the determination of protein structure in COVID-19 and the provision of deuteration services to other scientists.
reference
Posted on 26 Apr 2022, this text provides information on Physics Related related to Miscellaneous in Physics Related. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.