Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Take A QuizChallenge yourself and boost your learning! Start the quiz now to earn credits.
Take A QuizUnlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
Take A QuizPlease log in to access this content. You will be redirected to the login page shortly.
LoginPhysics Related Miscellaneous in Physics Related . 6 months ago
The quantum Hall effect (or integer quantum Hall effect) is a quantized version of the Hall effect which is observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall resistance Rxy exhibits steps that take on the quantized values
R x y = V Hall I channel = h e 2 ν , {\displaystyle R_{xy}={\frac {V_{\text{Hall}}}{I_{\text{channel}}}}={\frac {h}{e^{2}\nu }},}where VHall is the Hall voltage, Ichannel is the channel current, e is the elementary charge and h is Planck's constant. The divisor ν can take on either integer (ν = 1, 2, 3,...) or fractional (ν = 1/3, 2/5, 3/7, 2/3, 3/5, 1/5, 2/9, 3/13, 5/2, 12/5,...) values. Here, ν is roughly but not exactly equal to the filling factor of Landau levels. The quantum Hall effect is referred to as the integer or fractional quantum Hall effect depending on whether ν is an integer or fraction, respectively.
The striking feature of the integer quantum Hall effect is the persistence of the quantization (i.e. the Hall plateau) as the electron density is varied. Since the electron density remains constant when the Fermi level is in a clean spectral gap, this situation corresponds to one where the Fermi level is an energy with a finite density of states, though these states are localized (see Anderson localization).
The fractional quantum Hall effect is more complicated; its existence relies fundamentally on electron–electron interactions. The fractional quantum Hall effect is also understood as an integer quantum Hall effect, although not of electrons but of charge-flux composites known as composite fermions. In 1988, it was proposed that there was quantum Hall effect without Landau levels. This quantum Hall effect is referred to as the quantum anomalous Hall (QAH) effect. There is also a new concept of the quantum spin Hall effect which is an analogue of the quantum Hall effect, where spin currents flow instead of charge currents.
referenceFull Form | Category |
---|---|
Quantum Hall Experiment | Electronics |
Will you inform me when you are on ... leg of approach?? | Governmental |
Qué haría Él | International |
Qu?har? ? | International |
Quantum Hall Effect | Physics Related |
Ipc Holdings, Ltd. | Stock Exchange |
Posted on 23 Dec 2024, this text provides information on Physics Related related to Miscellaneous in Physics Related. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.
Ready to take your education and career to the next level? Register today and join our growing community of learners and professionals.