Speak now
Please Wait Image Converting Into Text...
Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
Space Science Miscellaneous in Space Science . 1 week ago
The Nuclear Instrumentation Module (NIM) standard defines mechanical and electrical specifications for electronics modules used in experimental particle and nuclear physics. The concept of modules in electronic systems offers enormous advantages in flexibility, interchange of instruments, reduced design effort, ease in updating and maintaining the instruments.
The NIM standard is the first (and perhaps the simplest) such standard. First defined by the U.S. Atomic Energy Commission's report TID-20893 in 1968–1969, NIM was most recently revised in 1990 (DOE/ER-0457T). It provides a common footprint for electronic modules (amplifiers, ADCs, DACs, discriminators, etc.), which plug into a larger chassis (NIM crate, or NIM bin). The crate must supply ±12 and ±24 volts DC power to the modules via a backplane; the standard also specifies ±6 V DC and 220 V or 110 V AC pins, but not all NIM bins provide them. Mechanically, NIM modules must have a minimum standard width of 1.35 in (34 mm), a maximum faceplate height of 8.7 in (221 mm) and depth of 9.7 in (246 mm). They can, however, also be built in multiples of this standard width, that is, double-width, triple-width etc.
The NIM standard also specifies cabling, connectors, impedances and levels for logic signals. The fast logic standard (commonly known as NIM logic) is a current-based logic, negative "true" (at −16 mA into 50 ohms = −0.8 volts) and 0 mA for "false"; an ECL-based logic is also specified.Apart from the above mentioned mechanical/physical and electrical specifications/restrictions, the individual is free to design their module in any way desired, thus allowing for new developments and improvements for efficiency or looks/aesthetics.
NIM modules cannot communicate with each other through the crate backplane; this is a feature of later standards such as CAMAC and VMEbus. As a consequence, NIM-based ADC modules are nowadays uncommon in nuclear and particle physics. NIM is still widely used for amplifiers, discriminators, nuclear pulse generators and other logic modules that do not require digital data communication but benefit from a backplane connector that is better suited for high power use.
Posted on 17 Jan 2025, this text provides information on Space Science related to Miscellaneous in Space Science. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
Answers
No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.
Ready to take your education and career to the next level? Register today and join our growing community of learners and professionals.