Speak now
Please Wait Image Converting Into Text...
Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
Technology Miscellaneous in Technology . 1 month ago
Rain fade refers primarily to the absorption of a microwave radio frequency (RF) signal by atmospheric rain, snow, or ice, and losses which are especially prevalent at frequencies above 11 GHz. It also refers to the degradation of a signal caused by the electromagnetic interference of the leading edge of a storm front. Rain fade can be caused by precipitation at the uplink or downlink location. It does not need to be raining at a location for it to be affected by rain fade, as the signal may pass through precipitation many miles away, especially if the satellite dish has a low look angle. From 5% to 20% of rain fade or satellite signal attenuation may also be caused by rain, snow, or ice on the uplink or downlink antenna reflector, radome, or feed horn. Rain fade is not limited to satellite uplinks or downlinks, as it can also affect terrestrial point-to-point microwave links (those on the earth's surface).
Rain fade is usually estimated experimentally and also can be calculated theoretically using scattering theory of raindrops. Raindrop size distribution (DSD) is an important consideration for studying rain fade characteristics. Various mathematical forms such as Gamma function, lognormal or exponential forms are usually used to model the DSD. Mie or Rayleigh scattering theory with point matching or t-matrix approach is used to calculate the scattering cross section, and specific rain attenuation. Since rain is a non-homogeneous process in both time and space, specific attenuation varies with location, time and rain type.
Total rain attenuation is also dependent upon the spatial structure of rain field. Horizontal, as well as vertical, extension of rain again varies for different rain type and location. Limit of the vertical rain region is usually assumed to coincide with 0˚ isotherm and called rain height. Melting layer height is also used as the limits of rain region and can be estimated from the bright band signature of radar reflectivity. The horizontal rain structure is assumed to have a cellular form, called rain cell. Rain cell sizes can vary from a few hundred meters to several kilometers and dependent upon the rain type and location. Existence of very small size rain cells are recently observed in tropical rain.
Possible ways to overcome the effects of rain fade are site diversity, uplink power control, variable rate encoding, and receiving antennas larger than the requested size for normal weather conditions.
Posted on 23 Dec 2024, this text provides information on Technology related to Miscellaneous in Technology. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
Answers
No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.
Ready to take your education and career to the next level? Register today and join our growing community of learners and professionals.