INTEGRATING by parts is given by:⇒ \(\rm ∫ u vdx=u ∫ vdx- ∫ \left({du\over dx}\times \int vdx\right)dx \) + Cwhere u is the function u(x) and v is the function v(x) ILATE rule is USUALLY, the PREFERENCE order of this rule is based on some functions such as INVERSE, Logarithm, Algebraic, Trigonometric and Exponent.Formula:\(\rm \int \frac{1}{x^2 -a^2}dx = \frac{1}{2a} \log \left|\frac{x-a}{x+a}\right| + c\) Calculation:Let I = \(\rm \displaystyle∫\dfrac{xe^x}{\sqrt{1+e^x}}dx\)Take 1 + ex = t2 .... (1)Differentiating with respect to x, we get⇒ ex dx = 2tdtFrom equation (1), we getex = t2 - 1So, x = log (t2 - 1)Now,I = \(\rm \displaystyle∫\dfrac{\log (t^2 - 1)}{\sqrt{t^2}}2tdt\)= \(\rm 2 × \displaystyle∫\dfrac{\log (t^2 - 1)}{t} × tdt\)= 2 ∫ log (t2 - 1) dtUsing integration by parts rule, we get= 2 [log (t2 - 1) × t - 2 \(\rm \int \frac {t^2}{t^2-1}dt\) ]= 2t log (t2 - 1) - 4 \(\rm \int \left[1+ \frac{1}{t^2-1} \right ]dt\)= 2t log (t2 - 1) - 4t - 4 × \(\rm \frac{1}{2} \log \left(\frac{t-1}{t+1} \right) +c\)= 2t log (t2 - 1) - 4t - \(\rm2\log \left(\frac{t-1}{t+1} \right) +c\)= 2t(log (t2 - 1) - 2) - \(\rm2\log \left(\frac{t-1}{t+1} \right) +c\)Resubstitute the value of t, we get= 2 (x - 2) \(\rm \sqrt{1+e^x}\) - \( \rm 2 \log \frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}+C\)= \(\rm (2x-4)\sqrt{1+e^x}- \rm 2 \log \frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}+C\)

"> INTEGRATING by parts is given by:⇒ \(\rm ∫ u vdx=u ∫ vdx- ∫ \left({du\over dx}\times \int vdx\right)dx \) + Cwhere u is the function u(x) and v is the function v(x) ILATE rule is USUALLY, the PREFERENCE order of this rule is based on some functions such as INVERSE, Logarithm, Algebraic, Trigonometric and Exponent.Formula:\(\rm \int \frac{1}{x^2 -a^2}dx = \frac{1}{2a} \log \left|\frac{x-a}{x+a}\right| + c\) Calculation:Let I = \(\rm \displaystyle∫\dfrac{xe^x}{\sqrt{1+e^x}}dx\)Take 1 + ex = t2 .... (1)Differentiating with respect to x, we get⇒ ex dx = 2tdtFrom equation (1), we getex = t2 - 1So, x = log (t2 - 1)Now,I = \(\rm \displaystyle∫\dfrac{\log (t^2 - 1)}{\sqrt{t^2}}2tdt\)= \(\rm 2 × \displaystyle∫\dfrac{\log (t^2 - 1)}{t} × tdt\)= 2 ∫ log (t2 - 1) dtUsing integration by parts rule, we get= 2 [log (t2 - 1) × t - 2 \(\rm \int \frac {t^2}{t^2-1}dt\) ]= 2t log (t2 - 1) - 4 \(\rm \int \left[1+ \frac{1}{t^2-1} \right ]dt\)= 2t log (t2 - 1) - 4t - 4 × \(\rm \frac{1}{2} \log \left(\frac{t-1}{t+1} \right) +c\)= 2t log (t2 - 1) - 4t - \(\rm2\log \left(\frac{t-1}{t+1} \right) +c\)= 2t(log (t2 - 1) - 2) - \(\rm2\log \left(\frac{t-1}{t+1} \right) +c\)Resubstitute the value of t, we get= 2 (x - 2) \(\rm \sqrt{1+e^x}\) - \( \rm 2 \log \frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}+C\)= \(\rm (2x-4)\sqrt{1+e^x}- \rm 2 \log \frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}+C\)

">

If \(\rm \displaystyle\int\dfrac{xe^x}{\sqrt{1+e^x}}dx=f(x)\sqrt{1+e^x}- \rm 2 \log \frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}+C\), then f(x) is

UPSEE Calculus in UPSEE 11 months ago

  19   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Concept:Integration by parts: Integration by parts is a method to find integrals of products. The formula for INTEGRATING by parts is given by:⇒ \(\rm ∫ u vdx=u ∫ vdx- ∫ \left({du\over dx}\times \int vdx\right)dx \) + Cwhere u is the function u(x) and v is the function v(x) ILATE rule is USUALLY, the PREFERENCE order of this rule is based on some functions such as INVERSE, Logarithm, Algebraic, Trigonometric and Exponent.Formula:\(\rm \int \frac{1}{x^2 -a^2}dx = \frac{1}{2a} \log \left|\frac{x-a}{x+a}\right| + c\) Calculation:Let I = \(\rm \displaystyle∫\dfrac{xe^x}{\sqrt{1+e^x}}dx\)Take 1 + ex = t2 .... (1)Differentiating with respect to x, we get⇒ ex dx = 2tdtFrom equation (1), we getex = t2 - 1So, x = log (t2 - 1)Now,I = \(\rm \displaystyle∫\dfrac{\log (t^2 - 1)}{\sqrt{t^2}}2tdt\)= \(\rm 2 × \displaystyle∫\dfrac{\log (t^2 - 1)}{t} × tdt\)= 2 ∫ log (t2 - 1) dtUsing integration by parts rule, we get= 2 [log (t2 - 1) × t - 2 \(\rm \int \frac {t^2}{t^2-1}dt\) ]= 2t log (t2 - 1) - 4 \(\rm \int \left[1+ \frac{1}{t^2-1} \right ]dt\)= 2t log (t2 - 1) - 4t - 4 × \(\rm \frac{1}{2} \log \left(\frac{t-1}{t+1} \right) +c\)= 2t log (t2 - 1) - 4t - \(\rm2\log \left(\frac{t-1}{t+1} \right) +c\)= 2t(log (t2 - 1) - 2) - \(\rm2\log \left(\frac{t-1}{t+1} \right) +c\)Resubstitute the value of t, we get= 2 (x - 2) \(\rm \sqrt{1+e^x}\) - \( \rm 2 \log \frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}+C\)= \(\rm (2x-4)\sqrt{1+e^x}- \rm 2 \log \frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}+C\)

Posted on 27 Nov 2024, this text provides information on UPSEE related to Calculus in UPSEE. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.