FACE = circle \[{{C}_{1}}=\pi {{l}^{2}}/4\] \['l'\] becomes DIAMETER. Similarly, \[{{C}_{2}}=\frac{\pi {{b}^{2}}}{4}\] \[\therefore \] Total area\[=\frac{\pi }{4}\times \left( {{42}^{2}}+{{35}^{2}} \right)\] \[=\frac{11\times 7}{2}\left( {{6}^{2}}+{{5}^{2}} \right)=\frac{77\times 61}{2}\] To, this we add are of rectangle, \[{{A}_{2}}=l\times b\] \[=42\times 35=1470\Rightarrow \]Total area \[=\frac{77\times 61}{2}+1470\]