Speak now
Please Wait Image Converting Into Text...
Embark on a journey of knowledge! Take the quiz and earn valuable credits.
Challenge yourself and boost your learning! Start the quiz now to earn credits.
Unlock your potential! Begin the quiz, answer questions, and accumulate credits along the way.
Course Queries Syllabus Queries 2 years ago
Posted on 16 Aug 2022, this text provides information on Syllabus Queries related to Course Queries. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.
Turn Your Knowledge into Earnings.
On Friday, we had our Physics test. We (the tenth grade students) have the basic introduction to Radioactivity and a few nuclear reactions in our syllabus. In the test, the following question was asked:
Identify xx in the following nuclear reaction and state its mass: 2412Mg+x→2311Na+11H1224Mg+x→1123Na+11H
Identify xx in the following nuclear reaction and state its mass:
2412Mg+x→2311Na+11H1224Mg+x→1123Na+11H
I noticed that the sum of the masses and atomic numbers of the reactants and products is constant:
Right Hand side (without xx):Total sum of mass = 24Total sum of atomic numbers = 12 Left Hand side:Total mass = 23 + 1 = 24Total sum of atomic numbers = 11 + 1 = 12
Right Hand side (without xx):Total sum of mass = 24Total sum of atomic numbers = 12
Left Hand side:Total mass = 23 + 1 = 24Total sum of atomic numbers = 11 + 1 = 12
Since there is no difference in mass or charge, I wrote that xx is a massless, chargeless, photon or γγparticle.
After the test, a few of my friends said the xx is an anti-neutrino (ν¯ν¯), which is also a massless, chargeless particle. But a ν¯ν¯ is released only during the conversion of a neutron right?
10n→1+1p+ REPLY 0 views 0 likes 0 shares Facebook Twitter Linked In WhatsApp
You're right that in the context of radioactivity, antineutrinos are pretty much only released when a neutron turns into a proton, 10n→11p+0−1e+ν¯01n→11p+−10e+ν¯. They can also be consumed when a proton turns into a neutron and a positron, 11p+ν¯→10n+01e11p+ν¯→01n+10e. There are some other processes that involve antineutrinos, but they're fairly rare.
But one general rule that applies to all processes in radioactivity is that any reaction that involves a neutrino or antineutrino must also involve the conversion of a proton to a neutron or vice versa.
So think about this: how many protons exist in the initial state? (on the left side of the arrow) And how many neutrons? What about on the right side? Are those numbers the same? That will tell you whether xx can be an antineutrino. If it's not an antineutrino, then it has to be a photon, as that is the only other massless, uncharged particle that participates in nuclear reactions.
Note: technically neutrinos are not massless, but they are so light they might as well be massless when you're talking about radioactivity. They are less than a billionth the mass of a proton.
No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.
Course Queries 4 Answers
Course Queries 5 Answers
Course Queries 1 Answers
Course Queries 3 Answers
Ready to take your education and career to the next level? Register today and join our growing community of learners and professionals.