VIN is active and VREF = 0, the circuit is drawn as:\({V_{OUT1}} = - \frac{{{R_F}}}{{{R_{IN}}}}{V_{IN}}\) When VIN = 0 and VREF is active, the circuit is drawn as:\({V_{OU{T_2}}} = \left( {\frac{{{V_{REF}} - {R_2}}}{{{R_1} + {R_2}}}} \right)\left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\)Total Vout = Vout1 + Vout2\({V_{out}} = \left( {\frac{{{V_{REF}} - {R_2}}}{{{R_1} + {R_2}}}} \right)\left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right) - \frac{{{R_E}}}{{{R_{IN}}}}\;{V_{IN}}\)Given VREF is fixed then V+ is fixed, i.e.\({V^ + } = \frac{{{V_{REF}} - {R_2}}}{{{R_1} + {R_2}}}\)\({V_{OUT}} = \left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\left( {\frac{{{V_{REF}}\;{R_2}}}{{{R_1} + {R_2}}}} \right) - \frac{{{R_F}}}{{{R_{IN}}}}{V_{IN}}\)For VIN = 0.1 V, we have VOUT = 1 V\(1 = \left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\left( {\frac{{{V_{REF}}\;{R_2}}}{{{R_1} + {R_2}}}} \right) - \frac{{{R_F}}}{{{R_{IN}}}}\left( {0.1} \right)\) ---(i)For VIN = 10 V, we have VOUT = 6 V\(6 = \left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\left( {\frac{{{V_{REF}}\;{R_2}}}{{{R_1} + {R_2}}}} \right) - \frac{{{R_F}}}{{{R_{IN}}}}\left( 1 \right)\) ---(ii)From (i)\(\left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\left( {\frac{{{V_{REF}} \cdot {R_2}}}{{{R_1} + {R_2}}}} \right) = 1 + \frac{{{R_F}}}{{{R_{IN}}}}\left( {0.1} \right)\)Putting above value in eq (ii)\(6 = 1 + \frac{{{R_F}}}{{{R_{IN}}}}\left( {0.1} \right) - \frac{{{R_F}}}{{{R_{IN}}}}\left( 1 \right)\)\(5 = \frac{{{R_F}}}{{{R_{IN}}}}\left( { - 0.9} \right)\)\(\frac{{{R_F}}}{{{R_{IN}}}} = - \frac{5}{{0.9}} = - 5.55\)Since only positive values are given in the OPTIONS:\(\frac{{{R_F}}}{{{R_{IN}}}} = 5.55\)

"> VIN is active and VREF = 0, the circuit is drawn as:\({V_{OUT1}} = - \frac{{{R_F}}}{{{R_{IN}}}}{V_{IN}}\) When VIN = 0 and VREF is active, the circuit is drawn as:\({V_{OU{T_2}}} = \left( {\frac{{{V_{REF}} - {R_2}}}{{{R_1} + {R_2}}}} \right)\left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\)Total Vout = Vout1 + Vout2\({V_{out}} = \left( {\frac{{{V_{REF}} - {R_2}}}{{{R_1} + {R_2}}}} \right)\left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right) - \frac{{{R_E}}}{{{R_{IN}}}}\;{V_{IN}}\)Given VREF is fixed then V+ is fixed, i.e.\({V^ + } = \frac{{{V_{REF}} - {R_2}}}{{{R_1} + {R_2}}}\)\({V_{OUT}} = \left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\left( {\frac{{{V_{REF}}\;{R_2}}}{{{R_1} + {R_2}}}} \right) - \frac{{{R_F}}}{{{R_{IN}}}}{V_{IN}}\)For VIN = 0.1 V, we have VOUT = 1 V\(1 = \left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\left( {\frac{{{V_{REF}}\;{R_2}}}{{{R_1} + {R_2}}}} \right) - \frac{{{R_F}}}{{{R_{IN}}}}\left( {0.1} \right)\) ---(i)For VIN = 10 V, we have VOUT = 6 V\(6 = \left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\left( {\frac{{{V_{REF}}\;{R_2}}}{{{R_1} + {R_2}}}} \right) - \frac{{{R_F}}}{{{R_{IN}}}}\left( 1 \right)\) ---(ii)From (i)\(\left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\left( {\frac{{{V_{REF}} \cdot {R_2}}}{{{R_1} + {R_2}}}} \right) = 1 + \frac{{{R_F}}}{{{R_{IN}}}}\left( {0.1} \right)\)Putting above value in eq (ii)\(6 = 1 + \frac{{{R_F}}}{{{R_{IN}}}}\left( {0.1} \right) - \frac{{{R_F}}}{{{R_{IN}}}}\left( 1 \right)\)\(5 = \frac{{{R_F}}}{{{R_{IN}}}}\left( { - 0.9} \right)\)\(\frac{{{R_F}}}{{{R_{IN}}}} = - \frac{5}{{0.9}} = - 5.55\)Since only positive values are given in the OPTIONS:\(\frac{{{R_F}}}{{{R_{IN}}}} = 5.55\)

">

For the circuit with and ideal OPAMP shown in the figure. VREF is fixed.If VOUT = 1 for VIN = 0.1 volt and VOUT = 6 volt for VIN = 1 volt, where VOUT is measured across RL connected at the output of this OPAMP, the value of RF / RIN is

Electronics & Communication Engineering Op-Amp And Its Applications in Electronics & Communication Engineering . 7 months ago

  3   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

Concept:When VIN is active and VREF = 0, the circuit is drawn as:\({V_{OUT1}} = - \frac{{{R_F}}}{{{R_{IN}}}}{V_{IN}}\) When VIN = 0 and VREF is active, the circuit is drawn as:\({V_{OU{T_2}}} = \left( {\frac{{{V_{REF}} - {R_2}}}{{{R_1} + {R_2}}}} \right)\left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\)Total Vout = Vout1 + Vout2\({V_{out}} = \left( {\frac{{{V_{REF}} - {R_2}}}{{{R_1} + {R_2}}}} \right)\left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right) - \frac{{{R_E}}}{{{R_{IN}}}}\;{V_{IN}}\)Given VREF is fixed then V+ is fixed, i.e.\({V^ + } = \frac{{{V_{REF}} - {R_2}}}{{{R_1} + {R_2}}}\)\({V_{OUT}} = \left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\left( {\frac{{{V_{REF}}\;{R_2}}}{{{R_1} + {R_2}}}} \right) - \frac{{{R_F}}}{{{R_{IN}}}}{V_{IN}}\)For VIN = 0.1 V, we have VOUT = 1 V\(1 = \left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\left( {\frac{{{V_{REF}}\;{R_2}}}{{{R_1} + {R_2}}}} \right) - \frac{{{R_F}}}{{{R_{IN}}}}\left( {0.1} \right)\) ---(i)For VIN = 10 V, we have VOUT = 6 V\(6 = \left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\left( {\frac{{{V_{REF}}\;{R_2}}}{{{R_1} + {R_2}}}} \right) - \frac{{{R_F}}}{{{R_{IN}}}}\left( 1 \right)\) ---(ii)From (i)\(\left( {1 + \frac{{{R_F}}}{{{R_{IN}}}}} \right)\left( {\frac{{{V_{REF}} \cdot {R_2}}}{{{R_1} + {R_2}}}} \right) = 1 + \frac{{{R_F}}}{{{R_{IN}}}}\left( {0.1} \right)\)Putting above value in eq (ii)\(6 = 1 + \frac{{{R_F}}}{{{R_{IN}}}}\left( {0.1} \right) - \frac{{{R_F}}}{{{R_{IN}}}}\left( 1 \right)\)\(5 = \frac{{{R_F}}}{{{R_{IN}}}}\left( { - 0.9} \right)\)\(\frac{{{R_F}}}{{{R_{IN}}}} = - \frac{5}{{0.9}} = - 5.55\)Since only positive values are given in the OPTIONS:\(\frac{{{R_F}}}{{{R_{IN}}}} = 5.55\)

Posted on 28 Oct 2024, this text provides information on Electronics & Communication Engineering related to Op-Amp And Its Applications in Electronics & Communication Engineering. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.