FRAC{{{V_b}}}{{100\;K}} + \frac{{{V_b} - {V_2}}}{{10\;k}} = 0\) \(\RIGHTARROW \frac{{{V_b}}}{{100\;k}} + \frac{{{V_b} - 50\;m}}{{10\;k}} = 0\) \(\Rightarrow {V_b} + 10\;{V_b} - 500\;m = 0 \Rightarrow {V_b} = \frac{{0.5}}{{11}}V\) By applying KCL at a,\(\frac{{{V_a} - {V_1}}}{{10\;k}} + \frac{{{V_a} - {V_{out}}}}{{100\;k}} = 0\) \(\Rightarrow \frac{{{V_a} - 10\;m}}{{10\;k}} + \frac{{{V_a} - {V_{out}}}}{{100\;k}} = 0\) ⇒ 10 Va – 100 m + Va - Vout = 0⇒ Vout = 11 Va – 0.1\({V_a} = {V_b} = \frac{{0.5}}{{11}}V\)\(\Rightarrow {V_{out}} = 11\left( {\frac{{0.5}}{{11}}} \right) - 0.1 = 0.4 = 400\;mV\)

"> FRAC{{{V_b}}}{{100\;K}} + \frac{{{V_b} - {V_2}}}{{10\;k}} = 0\) \(\RIGHTARROW \frac{{{V_b}}}{{100\;k}} + \frac{{{V_b} - 50\;m}}{{10\;k}} = 0\) \(\Rightarrow {V_b} + 10\;{V_b} - 500\;m = 0 \Rightarrow {V_b} = \frac{{0.5}}{{11}}V\) By applying KCL at a,\(\frac{{{V_a} - {V_1}}}{{10\;k}} + \frac{{{V_a} - {V_{out}}}}{{100\;k}} = 0\) \(\Rightarrow \frac{{{V_a} - 10\;m}}{{10\;k}} + \frac{{{V_a} - {V_{out}}}}{{100\;k}} = 0\) ⇒ 10 Va – 100 m + Va - Vout = 0⇒ Vout = 11 Va – 0.1\({V_a} = {V_b} = \frac{{0.5}}{{11}}V\)\(\Rightarrow {V_{out}} = 11\left( {\frac{{0.5}}{{11}}} \right) - 0.1 = 0.4 = 400\;mV\)

">

In the circuit below, the operational amplifier is ideal. If V1 = 10 mV and V2 = 50 mV, the output voltage (Vout) is

Electronics & Communication Engineering Op-Amp And Its Applications in Electronics & Communication Engineering . 7 months ago

  5   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

By applying KCL at Vb,\(\FRAC{{{V_b}}}{{100\;K}} + \frac{{{V_b} - {V_2}}}{{10\;k}} = 0\) \(\RIGHTARROW \frac{{{V_b}}}{{100\;k}} + \frac{{{V_b} - 50\;m}}{{10\;k}} = 0\) \(\Rightarrow {V_b} + 10\;{V_b} - 500\;m = 0 \Rightarrow {V_b} = \frac{{0.5}}{{11}}V\) By applying KCL at a,\(\frac{{{V_a} - {V_1}}}{{10\;k}} + \frac{{{V_a} - {V_{out}}}}{{100\;k}} = 0\) \(\Rightarrow \frac{{{V_a} - 10\;m}}{{10\;k}} + \frac{{{V_a} - {V_{out}}}}{{100\;k}} = 0\) ⇒ 10 Va – 100 m + Va - Vout = 0⇒ Vout = 11 Va – 0.1\({V_a} = {V_b} = \frac{{0.5}}{{11}}V\)\(\Rightarrow {V_{out}} = 11\left( {\frac{{0.5}}{{11}}} \right) - 0.1 = 0.4 = 400\;mV\)

Posted on 10 Nov 2024, this text provides information on Electronics & Communication Engineering related to Op-Amp And Its Applications in Electronics & Communication Engineering. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.