DS = \frac{{d{Q_{rev}}}}{T}\)If the process is reversible and adiabatic: dQrev = 0 ⇒ dS = 0\({Q_{rev}} = \smallint TdS\)Entropy analysis for a closed system:\(ds=(\frac{\delta Q}{T} )+ (\delta S)_{gen}\)Case 1: For an internally reversible process (δs)gen = 0When heat is added to the system ⇒ (δQ) = +ve ⇒ ds = +veWhen heat is rejected from the system ⇒ (δQ) = -ve ⇒ ds = -veFor adiabatic process ⇒ (δQ) = 0 ⇒ ds = 0 (ISENTROPIC) Case 2: For internally irreversible process (δs)gen ≠ 0 ⇒ (δs)gen = +veWhen heat is added to the system ⇒ (δQ) = +ve ⇒ ds = +veWhen heat is rejected from the system ⇒ (δQ) = -ve ⇒ ds = -ve or +ve or ZERO​Since (δs)gen = +ve and (δQ) = -ve so change in entropy, ds can be zero is (δQ/T) = δs)gen. In this case, the process will be ISENTROPICFor adiabatic process ⇒ (δQ) = 0 ⇒ ds = +ve Thus for a process to be isentropic there are TWO cases:Reversible adiabatic processThe irreversible process where (δQ/T) = δs)gen NOTE: Irreversible adiabatic process is not an isentropic process.

"> DS = \frac{{d{Q_{rev}}}}{T}\)If the process is reversible and adiabatic: dQrev = 0 ⇒ dS = 0\({Q_{rev}} = \smallint TdS\)Entropy analysis for a closed system:\(ds=(\frac{\delta Q}{T} )+ (\delta S)_{gen}\)Case 1: For an internally reversible process (δs)gen = 0When heat is added to the system ⇒ (δQ) = +ve ⇒ ds = +veWhen heat is rejected from the system ⇒ (δQ) = -ve ⇒ ds = -veFor adiabatic process ⇒ (δQ) = 0 ⇒ ds = 0 (ISENTROPIC) Case 2: For internally irreversible process (δs)gen ≠ 0 ⇒ (δs)gen = +veWhen heat is added to the system ⇒ (δQ) = +ve ⇒ ds = +veWhen heat is rejected from the system ⇒ (δQ) = -ve ⇒ ds = -ve or +ve or ZERO​Since (δs)gen = +ve and (δQ) = -ve so change in entropy, ds can be zero is (δQ/T) = δs)gen. In this case, the process will be ISENTROPICFor adiabatic process ⇒ (δQ) = 0 ⇒ ds = +ve Thus for a process to be isentropic there are TWO cases:Reversible adiabatic processThe irreversible process where (δQ/T) = δs)gen NOTE: Irreversible adiabatic process is not an isentropic process.

">

Isentropic flow is

Fluid Mechanics First Law Thermodynamics in Fluid Mechanics . 8 months ago

  2   0   0   0   0 tuteeHUB earn credit +10 pts

5 Star Rating 1 Rating

An isentropic process is also known as a reversible adiabatic process.\(DS = \frac{{d{Q_{rev}}}}{T}\)If the process is reversible and adiabatic: dQrev = 0 ⇒ dS = 0\({Q_{rev}} = \smallint TdS\)Entropy analysis for a closed system:\(ds=(\frac{\delta Q}{T} )+ (\delta S)_{gen}\)Case 1: For an internally reversible process (δs)gen = 0When heat is added to the system ⇒ (δQ) = +ve ⇒ ds = +veWhen heat is rejected from the system ⇒ (δQ) = -ve ⇒ ds = -veFor adiabatic process ⇒ (δQ) = 0 ⇒ ds = 0 (ISENTROPIC) Case 2: For internally irreversible process (δs)gen ≠ 0 ⇒ (δs)gen = +veWhen heat is added to the system ⇒ (δQ) = +ve ⇒ ds = +veWhen heat is rejected from the system ⇒ (δQ) = -ve ⇒ ds = -ve or +ve or ZERO​Since (δs)gen = +ve and (δQ) = -ve so change in entropy, ds can be zero is (δQ/T) = δs)gen. In this case, the process will be ISENTROPICFor adiabatic process ⇒ (δQ) = 0 ⇒ ds = +ve Thus for a process to be isentropic there are TWO cases:Reversible adiabatic processThe irreversible process where (δQ/T) = δs)gen NOTE: Irreversible adiabatic process is not an isentropic process.

Posted on 08 Nov 2024, this text provides information on Fluid Mechanics related to First Law Thermodynamics in Fluid Mechanics. Please note that while accuracy is prioritized, the data presented might not be entirely correct or up-to-date. This information is offered for general knowledge and informational purposes only, and should not be considered as a substitute for professional advice.

Take Quiz To Earn Credits!

Turn Your Knowledge into Earnings.

tuteehub_quiz

Tuteehub forum answer Answers

Post Answer

No matter what stage you're at in your education or career, TuteeHub will help you reach the next level that you're aiming for. Simply,Choose a subject/topic and get started in self-paced practice sessions to improve your knowledge and scores.